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Abstract—Over the last 30 years, a number of secure processor
architectures have been proposed to protect software integrity
and confidentiality during its distribution and execution. In such
architectures, encryption (together with integrity checking) is
used extensively, on any data leaving a defined secure boundary.

In this paper, we show how encryption can be achieved at the
instruction level using a stream cipher. Thus encryption is more
lightweight and efficient, and is maintained deeper in the memory
hierarchy than the natural off-chip boundary considered in most
research works. It requires the control flow graph to be used and
modified as part of the off-line encryption process, but thanks to
the LLVM framework, it can be integrated easily in a compiler
pipeline, and be completely transparent to the programmer.

We also describe hardware modifications needed to support
this encryption method, the latter were added to a 32 bit MIPS
soft core. The synthesis performed on a Altera Cyclone V FPGA
shows that encryption requires 26% of extra logic, while slowing-
down execution time by an average of 48% in the best setting.

I. INTRODUCTION

An increasing number of applications require processor
architectures that are both lightweight and able to preserve
software confidentiality. The historical motivation was a purely
economic one: protect intellectual property and prevent il-
legitimate duplication. Nowadays, software confidentiality is
rather seen from a security perspective, to prevent reverse-
engineering. The program being more resilient to analysis, the
effort needed to discover weaknesses is increased, and critical
patches can be deployed without fear of zero day exploits.

If one can modify the hardware, software encryption is
a well established way to achieve this confidentiality. The
program is encrypted using a regular cryptographic primitive,
and decryption is done using a hardware implementation of
the decryption algorithm in an assumed secure area. The
latter is close to the processor executing the software, at least
on the same chip. Aside from the confidentiality property,
encryption alone brings other interesting properties from a
security perspective:

• as each target have different encryption keys, shell code
design is harder, thus exploits cannot be deployed quickly
on a large scale.

• It can be used as a building block to provide control
flow integrity, as shown recently with the SOFIA [1]
architecture.

Current secure processor architectures are mostly concerned
with protecting program and data stored on off-chip memories
like Flash, Dynamic RAMs (DRAMs), the chip area being
assumed safe. For this reason, and also for performance con-
cerns, decryption is usually done at a cache (level 1, or level
2) memory boundary. As a consequence, data are decrypted
by chunks made of one or more cache lines (32B, 64B,
128B or even more). This way, the latency of the decryption
algorithm can be almost completely hidden, by overlapping
the decryption with memory fetches on a cache miss.

However, to the best of our knowledge, very few works
(but [2]) provide methods to achieve a finer encryption gran-
ularity, namely at the instruction level. Yet, it is required for
applications in which the target processor either do not have
cache, or needs to maintain encryption deeper in the memory
hierarchy.

In this work we show how encryption can be done at the
instruction level using stream ciphers, which are known to
be very lightweight and efficient. It requires the control flow
graph of the program to be used and restructured as part
of the encryption process. The proposed method, developed
as a LLVM [3] backend pass, can encrypt almost any given
machine code and do not require any modification from the
programmer but adding a compiler flag. We stress that we only
describe a method for encrypting the software, not verifying
its integrity. Of course, integrity is as much as important
as encryption in secure processors [4], but its treatment can
be somewhat orthogonal, so we decided to focus on the
encryption mechanism.

The hardware support, including decryption hardware
(based on the Trivium [5] stream cipher) is added into MIPS
soft core and deployed on a low cost Altera Cyclone V Field
Programmable Gate Array (FPGA). On this small core, the
encryption mechanism requires only 26% of extra logic. The
execution slowdown is highly dependent on the compilation
profile. In the best setting (performance optimized programs),
we measured an average slowdown of 48%, across all bench-
marks slowdown is between 29% up to 193%. These results
illustrate that a very lightweight and efficient encryption can
be achieved to target real-world applications on constrained
processors.

The rest of this paper is structured as follow: Section II
presents in more details the security model used in this



work, followed by a survey of related work in Section III.
Our software encryption process as well as its integration in
the LLVM framework is described in Section IV. Then, the
processor modifications needed to support encryption, and im-
plementation of common software abstractions like exceptions,
context switches are presented in Section V. We conclude
this paper by an evaluation of our method in Section VI.
The security of this solution is discussed, and result from our
practical implementation on FPGA are analyzed.

II. SECURITY MODEL

In this work we consider a standard System on Chip (SoC)
system, with a single processor, as the one shown Figure 1.
The processor itself may or may not have instruction and data
caches. Secure processors usually draw an insecure boundary
at the off-chip memories interfaces. Beyond this boundary, it
is assumed that any data can be observed, or tampered with.

Fig. 1. A typical system considered in this work, with the on-chip insecure
area drawn

Indeed, many popular attacks showed that memory can be
easily extracted on a wide range of devices, even with cheap
hardware. As an example, "Cold boot" family attacks exploit
data persistence in DRAMs [6]: after system reboot some
critical part of memory can then be recovered. Direct Memory
Access (DMA) components were successfully used to obtain
read or write access to CPU’s memory through some user
accessible peripherals (e.g., Firewire [7]). Even direct probing
using FPGA or low cost modchips [8] is feasible on external
buses like PCI express.

On the other hand, attacking the internals of a processor, say,
reading a register value at a given time, is far more challenging
and requires advanced physical attacks techniques as well as
expensive equipments [9], [10].

In this work, our goal is to protect the confidentiality of a
given machine code. Our insecure boundary is moved deeper
inside the chip, between the processor memory interfaces and
its execution logic (caches are also considered as insecure).
Formally, an adversary is allowed to:

• read any data stored into off-chip memories (the latter
will be ciphered),

• read instructions located into the instruction cache or any
on-chip memory.

For this purpose, we assume that the CPU’s execution logic
(Figure 1) is shielded, physical attacks cannot be performed,
such that cryptographic operations can be done safely inside
the core. This shielded region includes CPU’s internal state,
like the program counter (PC), registers, etc...

This work is primarily concerned with software protection.
The programs executed on the device are assumed «safe», in
the sense that they do not store critical data in memory, or if
so, manipulate them using a dedicated secure coprocessor.

III. RELATED WORK

Obfuscation techniques are a well-known class of software-
only counter measures [11], but cannot achieve provable
security even for restrained models [12] without some se-
cure hardware. Heuristic techniques have proven to increase
the time and effort needed to reverse a program, but can
be defeated by an experimented adversary. Furthermore, the
overhead on both program size and execution time is quite
high: depending on obfuscation level, factors between ×10
and ×100 are common [13].

The use of software encryption in processors dates back to
Best [14], [15], who proposed a series of patents that made
up the basis of the Dallas DS5002 [16] secure processor.
Early versions of the Dallas DS5002 were defeated by a
famous attack performed by Kuhn [4]. He managed to inject
instructions and monitor I/O to build a malicious code capable
of dumping the whole memory.

Since, number of researchers proposed hardware-assisted
memory encryption [17]–[21]. A block cipher is used as
encryption primitive to perform data authentication and de-
cryption when accessing data from insecure external memory.
The plain content is then placed in a processor-close memory,
assumed free from tampering (local RAM or a cache).

Perhaps the closest approach to ours is Instruction Set
Randomization (ISR) [2], [22], [23], though mainly designed
to prevent code injection. It was shown in [2] that ISR can
also be used to prevent reverse engineering. They added an
additional processor instruction called rev to randomize the
instruction set on demand. They implemented this software
encryption using the Trivium stream cipher on top of a Leon2
(SPARC V8) core. Compared to this work and more generally
ISR techniques, our solution do not need any instruction set
extension, so it is more transparent to the programmer.

IV. STATIC CODE ENCRYPTION WITH STREAM CIPHERS

A. Background on Stream Ciphers

Stream ciphers are an efficient class of pseudorandom
generators. Unlike block ciphers which provide a fixed-length
permutation, they can produce an arbitrary long pseudorandom
sequence. Formally speaking, a stream cipher is specified by
two functions:



• init : K × IV → S , which generates an initial state
from a secret key and an Initialization Vector (IV). The
IV can be made public, while the secret key must be kept
private.

• genBits : S → S×C, which produces the next state and
a pseudorandom output.

Once initialized with init and an arbitrary IV, pseudoran-
dom bits can be generated on demand and used as a one-time
pad to provide an encryption scheme, as shown in Figure 2.
The IV has to be transmitted with the ciphertext to allow
the receiver to decrypt. We stress that IVs have to be uni-
formly distributed to guarantee the full security of the scheme
under chosen plaintext attacks (IND-CPA). Furthermore non
uniform IV (using counter mode-like construction) might lead
to reduced attack complexity through time space trade-off
attacks [24].
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Fig. 2. Encryption using a stream cipher

For most stream ciphers, the init function is a costly
operation while the genBits function is quite fast. As a
consequence, stream ciphers are good for generating very long
pseudorandom sequences.

Let us note that a stream cipher can be constructed from
a block cipher using the output feedback mode of encryp-
tion [25]. However, dedicated stream ciphers are far more
efficient. In 2008, the eStream [5] competition selected a set of
recommended stream ciphers. For the hardware profile, three
were selected: Trivium, Grain and Mickey.

B. Why Stream Ciphers?

Block ciphers are a good established way achieve encryption
in secure processor architectures [26]. The counter mode of
encryption is a good fit for encrypting a processor address
space. Indeed, the base address of the data (or a block of data)
can be used as counter value, and, unless virtual memory is
used [21], [27], counter value uniqueness is guaranteed.

However, block ciphers suffer from two limitations for
being used to encrypt at the instruction level. The first one is
that block ciphers are intrinsically fixed-length permutations,
and for security reason, the minimum recommended block
size is 128 bits. On the other hand, in many instruction set
architectures, instructions almost never take more than 32
bits [28]. To exploit the full throughput of the block cipher,
some sort of complex instruction padding has to be designed.

The second limitation is that the decryption primitive has
to be able to work at CPU’s execution speed. Of course,
a fully pipelined implementation of a block cipher would
meet this requirement, but may also significantly increase the

hardware footprint. As an illustration, the fully pipelined AES
implementation from OpenCores1, is 3 times the size of our
base MIPS processor.

On the other hand, instruction execution is most of the
time a very sequential process, at least on in-order processor
architectures. As already mentioned, stream ciphers, once
initialized, are quite efficient to generate random bits. For this
reason they seem to fit quite well with the job of encrypting
software at instruction granularity. Once initialized, a stream
cipher is usually able to decrypt one instruction per cycle,
whereas a block cipher would require several rounds between
each instruction.

C. Encrypting Machine Code

Because of the stateful nature of stream ciphers, it is not
straightforward to use them for encrypting instructions. Let
first remark that a whole program cannot be encrypted using
a unique stream. Indeed, in case of a jump, the stream used
at the destination address must be known to keep decrypting
instructions. The only way to recover it is to re-compute the
entire stream from program start to the target instruction,
which would be quite inefficient for long programs. Thus,
it seems clear that a finer encryption granularity should be
adopted.

For this purpose let us introduce basic blocks (BB), a very
useful notion in compilers world. A basic block is defined
as a sequence of instructions without branch (e.g., Figure 3b,
the program is made of six BB). Additionally, the only entry
point of a BB is its first instruction and his output is its last
instruction. On in-order processor architectures, a basic block
is then always executed sequentially, and can be encrypted
using a unique stream cipher sequence. By definition, it is
impossible for a branch to fall in the middle of a BB, so the
stream cipher state never has to be reconstructed.

To encrypt a whole program, independent stream cipher
sequences are generated for each basic block, using different
initialization vectors (further details on this topic will be given
in Section IV-D). For a processor executing such an encrypted
software, branch instructions, which notify a BB change, have
to trigger a reset of the stream cipher with a new IV.

The rest of this section describes more precisely the encryp-
tion process, divided into three stages. To illustrate them, code
examples are given in MIPS assembly. Registers are prefixed
with a dollar symbol (e.g., $t0, $a1), all instructions used
with their semantic are listed in Table I. Further details can
be found in the instruction set reference [29].

TABLE I
MIPS INSTRUCTIONS USED IN THIS PAPER AND THEIR SEMANTIC

Instruction Semantic
li $t0, value $t0← value
lw $t0, N($a0) $t0←MEM [$a0 +N ]
add $t0, $t1, $t2 $t0← $t1 + $t2
bne $t0, $t1, dst if $t0 6= $t1, jump to dst
jump dst jump to dst
jr $t0 jump to address in $t0

1http://opencores.org/project,tiny_aes



1) Merging Basic Blocks for Encryption: A limitation of
the basic block approach to encryption is that, programs
usually have a large number of small basic blocks: for MIPS
programs [28], most basic blocks have between 3 and 8
instructions. Of course this metric is highly dependant on
the input program and the instruction set architecture. A high
number of basic blocks means that the stream cipher init

function will have to be called very often at the execution,
possibly leading to an important slowdown.

Hopefully longer sequences can be encrypted with the
same stream. Indeed, the only requirement for a sequence of
instructions to be encrypted with the same stream, is that there
is no incoming jump somewhere other than the first instruction.
There is absolutely no restriction on the number of outgoing
jumps in an encrypted sequence of instructions. It slightly
differs from a basic block, which cannot have more that one
outgoing jump. This structure will be called an encryptable
basic block for the rest of this paper and is defined as follows.

Definition IV.1. Encryptable Basic Block (EBB): A sequence
of instructions which has no incoming jumps other than at its
first instruction. It may contain any number of outgoing jumps.

This structure is known in compiler construction as a su-
perblock [30]. It is widely used to optimize programs for Very
Long Instruction Word (VLIW) architectures. Some powerful
techniques are available to create large superblocks: branch
target expansion, loop unrolling, common subexpression de-
tection. But an in-depth study of the optimal merging approach
would brings us out of the scope of this paper.

Meanwhile, a very simple strategy is applied to merge the
basic blocks. Two successive basic blocks (i.e, consecutive in
the address space) can be merged for encryption if the second
one has no incoming jump (can only be reached from the
first one). The basic block merging for the whole program
applies repeatedly this two-block merging procedure on the
control flow graph, until a fixed point is reached. Even this
simple approach brings performance improvements (7% in
average). The merging occurs very frequently in practice, for
instance while translating if-else structures. As an illustration,
Figure 3 is given a very naive PIN checking algorithm, which
traverses an array sequentially and returns false whenever an
element does not match the expected hard-coded pin code.
The control flow graph obtained using a normal compilation
process generates lots of basic blocks (Figure 3b). Without
merging basic blocks, it would require six different encryption
sequences, one for each basic block. However this control flow
graph can be fully merged into just two encryptable basic
blocks as shown Figure 3c.

2) Removing Branchless Fall Through Basic Blocks: A
special case to take care of for encryption correctness, is that
compilers, as an optimisation, usually remove away branches
going from two successive basic blocks. Indeed, the compiler
assumes that when two BB are layout successors, then the
first one can fall into the second one, without needing an
extra jump. This behaviour has to be disabled when encrypting
programs, otherwise the processor will not detect a sequence

bool check_pin(int *pin) {
if (pin[0] != 1) return false;
if (pin[1] != 2) return false;
if (pin[2] != 3) return false;
if (pin[3] != 4) return false;
return true;

}

(a) Original C function

# pin[0] != 1 ?
lw $t0, 0($a0)
li $t1, 1
bne $t0, $t1, false

# pin[1] != 2 ?
lw $t0, 4($a0)
li $t1, 2
bne $t0, $t1, false

# return false
false:
  li $v0, 0
  jr $ra

# pin[2] != 3 ?
lw $t0, 8($a0)
li $t1, 3
bne $t0, $t1, false

# pin[3] != 4 ?
lw $t0, 12($a0)
li $t1, 4
bne $t0, $t1, false

# return true
li $v0, 1
jr $ra

(b) Before basic block merging

# pin[0] != 1 ? 
lw $t0, 0($a0) 
li $t1, 1 
bne $t0, $t1, false

# pin[1] != 2 ? 
lw $t0, 4($a0) 
li $t1, 2 
bne $t0, $t1, false

# pin[2] != 3 ? 
lw $t0, 8($a0) 
li $t1, 3 
bne $t0, $t1, false

# pin[3] != 4 ? 
lw $t0, 12($a0) 
li $t1, 4 
bne $t0, $t1, false

# return true 
li $v0, 1
jr $ra

# return false
false:
  li $v0, 0
  jr $ra

(c) After basic block merging

Fig. 3. A PIN checking algorithm together with its control flow graph

change and continue its execution with the wrong stream. As
an example, Figure 4, BB2 has two predecessors (BB0 and
BB1), and BB1 falls through BB2 without a jump. To fix this
graph for encryption, an explicit direct jump to BB2 is inserted
at the end of BB1 (Figure 4b).

The branch removal appears early in the LLVM compilation
pipeline, so instead of modifying it directly, a late pass was
implemented, that inserts back these missing branches. Then,
this pass can be scheduled after the basic block merging
described previously, to insert just the minimum number of
branches required to fix the control flow graph.

BB0:      
    # some code      
    # ...      
    jump BB2

BB1:      
    bne $t0, $t1, BB3

BB2:      
    add $t0, $t0, $t0
    jr $ra

BB3:      
    nop

(a) Branchless fall through

BB0:      
    # some code      
    # ...      
    jump BB2

BB1:
    bne $t0, $t1, BB3
    jump BB2

BB2:      
    add $t0, $t0, $t0
    jr $ra

BB3:      
    nop

(b) Fixed with a jump instruc-
tion

Fig. 4. Illustration of a branchless fall through situation (from BB1 to BB2)



D. Initialization Vector Selection Schemes

The previous section described how the control flow graph
can be prepared for the encryption. To fully encrypt a graph
of encryptable basic blocks, a unique encryption stream has to
be generated for each one of them. The secret key being fixed
and hard wired into the processor, Initialization Vectors can
be used to generate distinct sequences. Unlike the secret key,
IVs are public data, there is no need to keep them secret. The
only requirement is that they must be unique across the whole
program to guarantee security of the one-time pad encryption.

1) A Counter Mode Approach: A first possible approach
is to compute IVs from the current program counter value
(CTR mode). Formally, an random initialisation vector IV0 is
generated for the whole program, then to encrypt an EBB, the
IV is computed as IV = IV0 + EBBaddr, and instructions
are "xored" with the corresponding stream cipher sequence
(as shown Table II). IVs uniqueness is guaranteed if virtual
memory isn’t used, as for a given program there is only one
instruction mapped to a given address.

TABLE II
BASIC BLOCK ENCRYPTION USING COUNTER MODE IVS

Instruction Encryption Encryption context
s0 ← init(IV0 + EBBaddr)

i0 lw $t0, 0($a0) i0 ⊕ r0 (r0, s1)← genBits(s0)
i1 li $t1, 1 i1 ⊕ r1 (r1, s2)← genBits(s1)
i2 bne $t0, $t1, dst i2 ⊕ r2 (r2, s3)← genBits(s2)

. . . . . .
in j dst in ⊕ rn (rn, sn+1)← genBits(sn)

The benefits of this method are that there is no impact
on code size, and it makes decryption dependent on current
processor state. This last property can be used to build control
flow integrity checking mechanisms [1].

2) Interleaving IVs in Code: Another approach is to in-
terleave IVs within the instructions. The IV for the current
EBB can be supplied using a known memory layout, as it
would be done for a classic message transmission over an
insecure channel. For example, the IV can be inserted at the
beginning of each encryptable basic block, as shown in the
example Table III.

TABLE III
BASIC BLOCK ENCRYPTION WITH INTERLEAVED IVS

Instruction Encryption Encryption context
IV s0 ← init(IV )

i0 lw $t0, 0($a0) i0 ⊕ r0 (r0, s1)← genBits(s0)
i1 li $t1, 1 i1 ⊕ r1 (r1, s2)← genBits(s1)
i2 bne $t0, $t1, dst i2 ⊕ r2 (r2, s3)← genBits(s2)

. . . . . .
in j dst in ⊕ rn (rn, sn+1)← genBits(sn)

Being able to use arbitrary IVs is interesting in terms of
security: for instance, in the context of an output feedback
mode of encryption (generalized stream cipher), provable
IND-CPA [25] encryption can be achieved. This also allows
the use other modes of encryption, which require uniformly
random IVs, like Cipher Block Chaining mode (CBC). An-
other interesting application is that it makes code sharing
between programs straightforward (solving one of the issues

addressed in [27]), so encrypted shared libraries can be gen-
erated and dynamically linked to.

However, encryption is not anymore dependent on the
address of instructions, hence code can be relocated. Unfortu-
nately, such programs are more prone to code reuse attacks,
as any EBB can be moved or called from anywhere.

3) Combining the Two Approaches: A third option is to
use a combination of the two previous schemes, a random IV
is interleaved within the code, and combined with the current
program counter value to generate the encryption sequence.
This way, the code is more resilient to code reuse attacks,
while still allowing other encryption modes to be used.

E. LLVM Integration

The full code encryption process is separated in two sequen-
tial parts, a control flow restructuring part implemented in the
LLVM [3] compiler framework, followed by a second part that
does the encryption. The motivation for this two stage design,
is to support linkage of encrypted programs, and to statically
guarantee IVs uniqueness across the entire program.

Three additional passes are implemented and inserted into
LLVM’s MIPS code generation backend. It would be much
cleaner if they could be done on LLVM intermediate rep-
resentation (middle-end). Unfortunately these pass make use
of basic block placement information, which are generated in
early backend passes. That being said, passes are very generic
and can be easily ported to other RISC targets.

The first pass does the basic block merging, the second one
searches and adds jumps between fall through basic blocks
and the optional third one sets up the layout for IV storage. It
allocates space in the code where IVs will be stored, at this
stage, memory addresses are not computed yet so these slots
can be inserted without breaking the address layout. Thanks
to LLVM’s highly modular design, the code still benefits from
late optimisation passes, including delay slot filling.

The encryption is done by a standalone program which
takes as input a fully linked object file and produces the
final encrypted binary that can be distributed securely to
the processor. This tool reconstructs the control flow graph
and internally runs a software version of the stream cipher
(Trivium in our case). It is also responsible for choosing IVs
for the whole program and ensures that all of them are unique.

Figure 5 illustrates the complete compile flow. For the
programmer, producing an encrypted binary boils down to:
1) adding a compiler flag while compiling sources to object
files, 2) encrypt the final binary. Hence the encryption can be
easily integrated in a standard build system like Make.

V. HARDWARE SUPPORT

The architectural modifications required for the decryption
are shown in Figure 6. Instead of providing an instruction
directly from memory to the decoding logic, this value is
unmasked with a stream generated by an internal cipher.
Furthermore, the processor branch handling is also modified
to handle IV change. Once a jump is detected, the processor
executes the following steps:



Fig. 5. Compilation flow for an encrypted program

1) Compute the IV for the branch destination address.
Depending on the IV selection scheme used (dis-
cussed IV-D) either read it from instruction memory (and
skip several instructions), or compute it from the current
program counter value.

2) Reset the stream cipher and wait for initialization to be
done.

3) Continue execution as soon as the stream is ready

Fig. 6. Modification made to CPU’s fetch stage for encryption support

A. Handling Exceptions/Interruptions

An exception is an unexpected event during program exe-
cution (division by zero, invalid memory access, interruption,
...), it is commonly handled on processors by jumping to an
exception handler and putting the processor into a special
mode. Once the exception is handled, the processor resumes
its normal execution to the instruction where the exception
was triggered.

Exceptions can still be handled while executing encrypted
code. To this end, the processor must be able to restore or re-
compute the correct stream cipher state when returning from
the exception handler. A straightforward solution would be
to just save the whole stream cipher state on exception, but
it would require important storage and it is not satisfying
in terms of security. Indeed, anyone can compute the full
encryption sequence from a given stream cipher state (see
Section IV-A), so it must be kept as private as the secret key.

Instead, we remark that only the EBB address and the
current offset in the EBB need to be known to restore the
stream cipher state. Indeed, execution can resume at EBB
start address, and instructions are skipped until the offset

is reached. Then instruction execution can resume with the
correct decryption stream. To continuously keep the offset in
the current EBB, a register is added to track the address of
the last jump. The offset in the current EBB can be computed
as the difference between the current program counter value
and this register.

B. Context Switching

In order to support context switching with encryption, the
programmer must be able to save and restore the stream cipher
state for the current process. As context switching relies on
exceptions, the above solution still applies quite well, the extra
register holding last jump address just has to be visible to the
programmer. This way, this additional register can be saved
and restored as part of the context switching routine. To this
end, we overloaded the MIPS instructions mfc0 and mtc0,
which are dedicated to move data from and to control and
status registers.

VI. EVALUATION

A. Security Analysis

As the CPU machine code is encrypted using a proven
IND-CPA2 encryption scheme, it benefits from security proofs
of the underlying scheme. The key is kept secret inside the
processor and assumed free from observation and tampering.
Then, an adversary just observing the instructions memory
is equivalently viewing encrypted messages, that is, pairs of
the form (IV, Enck(IV,m)). The security of the underlying
encryption scheme guarantees that an adversary cannot learn
anything about the code with static analysis.

However, encryption alone provide protection only against
a very restrained attack model, in particular it does not cover:

• An adversary modifying memory (like Kuhn’s attack [4]).
• Dynamic analysis of memory access patterns [31].

B. Compatibility with Software Integrity Mechanisms

Software Integrity has been ignored through this work so
far. Yet, it is a real concern (see Section II). In particular
when using a one-time pad encryption, ciphertexts can be
easily tampered with. For instance a destination register can
be changed just by "xoring" the correct field in a ciphered
instruction.

Fortunately, most integrity checking mechanisms from other
secure processor architectures [26] can be applied on top of
our encryption method (encrypt-then-authenticate paradigm).
However instruction level integrity do not seems realistic: a tag
would have to be associated with each instruction, resulting
in a huge code size increase. The best solution seems to
authenticate data per block of fixed length, either a cache line
or a buffer of instructions if the system does not have a cache.
To be fully effective the integrity checking has to be done
before executing a complete block of instruction, to prevent
any unchecked instruction from executing.

2The scheme used is IND-CPA under the assumption that the function
F defined by Fk(IV ) = genBits(init(k, IV )) is a pseudorandom
function [25]



C. Hardware Implementation

The hardware support described in Section V is imple-
mented on a 32 bits MIPS [29] soft core. The processor itself
is an integer only, in-order, five stage pipeline, with 32KB of
read only instruction memory, and 32KB of data RAM, both
are single cycle latency memory (implemented using FPGA’s
BRAMs). Trivium, an eStream [5] hardware profile finalist, is
used as the underlying stream cipher because of its simplicity
and efficiency. It has 80 bit key and IV and can be unrolled to
generate up to 64 bits per cycles without increasing its circuit
depth. Further unrolling can be done, but it would increase the
critical path and decrease the maximum frequency.

The syntheses are done on a low cost Altera FGPA from the
Cyclone V family (5CEBA4F23C7N). Table IV provides a set
of synthesis results as well as maximum frequency obtained
through static timing analysis. One can observe that Trivium,
even unrolled, has a very small footprint and a very high
maximum frequency.

For comparison, a fully pipelined 128 bit AES implementa-
tion found on OpenCores is also synthesized, it has an initial
latency of 21 cycles (very close to the 18 cycles needed
by Trivium x64). Although it achieves a higher throughput
than the Trivium implementations, it uses far more FPGA
resources. It is more than three time bigger than our base
processor, and more than ten times bigger that the Trivium x64.
This illustrates why stream ciphers are such good candidates
for the encryption.

The complete encryption mechanism increases overall
FPGA occupancy by 1.5%, and the size of the core by
26%, mainly because of Trivium circuit and little additional
control hardware. Interestingly, the encryption hardware does
not affect CPU’s critical path, hence, the maximum frequency
of the circuit is unchanged.

TABLE IV
SYNTHESIS RESULTS ON ALTERA CYCLONE V (5CEBA4F23C7N)

Adaptative Logic Module (ALM) fmax

tiny AES 128 3403 (18%) 189 MHz
Trivium_x1 148 (0.8%) 456 MHz
Trivium_x32 237 (1.2%) 360 MHz
Trivium_x64 288 (1.5%) 344 MHz
CPU base 1094 (5.9%) 108 MHz
CPU enc 1379 (7.46%) 108 MHz

D. Performance Analysis

The following evaluation methodology is used: an input
program is compiled using some constant compiler flags, with
and without encryption. The two resulting programs are then
compared under two criteria, code size and execution time
(measured in CPU cycles). The flags used are -O3, which
optimizes the input program for execution speed, and -Oz,
which optimizes for size.

These measurements are done for the two different IV
selection schemes described in Section IV-D: IVs computed
only from program counter, and IVs interleaved in code. A
set of relevant programs was selected to run the above mea-
surements. Most of them are based on open-source libraries

and can be easily ported on any embedded processors. Raw
results are given in Table V.

TABLE V
PERFORMANCE AND SIZE OVERHEAD RESULTS

IVs from PC IVs interleaved in code
LLVM -Oz LLVM -O3 LLVM -Oz LLVM -O3

Benchmark size time size time size time size time
AES +5 % x2.39 +2.3 % x1.29 27.4 % x2.93 7.8 % x1.41
SHA1 +6.6 % x2.10 +6.8 % x1.56 35.3 % x2.52 28.6 % x1.76
Quicksort +9.5 % x2.26 +11 % x1.59 35.6 % x2.75 30.1 % x1.82
uECC +7.4 % x2.16 +7.2 % x1.5 38.1 % x2.61 35.7 % x1.70
Average +7.12 % x2.23 +6.8 % x1.48 34.1 % x2.70 25.5 % x1.67

1) Code Size Overhead: Results for size overhead are
represented in Figure 7. Interestingly, even when storing IVs
at the beginning of each basic block, the binary size does not
increase by more than 40%. When IVs are not interleaved there
is still a binary size increase due the basic block restructuring,
but the observed increase does not exceed 11%.

Compiler options have a clear impact on the results. Our
interpretation is that speed optimisations (enabled with option
-O3) perform aggressive inlining and unrolling which increase
basic blocks sizes, hence reduce the impact of encryption (in
particular if IVs are interleaved).

Fig. 7. Overhead factor on program size

2) Execution Time Overhead: The encryption mechanism
also introduces a run-time overhead, more precisely a latency
is added for each branch taken, because the stream cipher
has to be initialized with a new IV. The CPU cannot be fed
with new instructions while the stream is not ready. With the
stream cipher used in these experiments, trivium_x64 running
at CPU’s clock, this latency is of 18 cycles.

The results given in Figure 8 show that the slowdown
ranges from 29% up to 193%. As expected, the overhead is
minimized with performance optimisations (-O3) and when
IVs are computed from PC. In that case, the average slowdown
is of 48%. When IVs are interleaved in code, the processor
has to skip some (3 in our case) instructions at the beginning
of each basic block, so performances are further reduced. This
overhead is likely to stay reasonable, unless critical loops
contain an important number of jumps.

We stress that our experimental processor does not include
any cache memory, hence only the effect of the encryption
is taken into account. Performances are expected to be better
with an instruction cache, as the fetch on a cache miss can
overlap with stream cipher initialization.



Fig. 8. Overhead factor on execution time

E. Pitfalls and Further Work

Our solution still suffers some pitfalls that we tried to
identify as best as possible. First, a small hardware support
must be added on-chip, which restrains the range of target
systems. From a security perspective, the protection is static,
and does not cover dynamic aspects, e.g., an adversary that
would track and analyze memory access patterns (control flow
analysis).

Further work could be done to improve performances. We
saw that this kind of encryption is highly compiler dependent,
this suggests that the basic block placement algorithm could be
modified to maximize the basic block merging. The hardware
implementation described in this paper is simple, significant
speed-up is likely to be achieved with a more evolved ar-
chitecture. This could be a stream cipher working at higher
frequency that the CPU’s clock, or to couple the stream cipher
with branch prediction to begin initialization ahead.

VII. CONCLUSION

This paper describes an efficient method to encrypt a binary
program with a stream cipher. The decryption is so fast
and lightweight that it can be performed very deeply in the
processor, so that plain instructions remain only in processor
execution logic. The method requires slight hardware and
software modification, which are implemented and evaluated
on FPGA. The results are promising and opens interesting
perspectives in order to improve performances and increase
the range of applications.
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