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Abstract. Cryptosystems are highly sensitive to physical attacks, which
leads security developers to design more and more complex countermea-
sures. Nonetheless, no proof of flaw absence has been given for any imple-
mentation of these countermeasures. This paper aims to formally verify
an implementation of one published countermeasure against fault injec-
tion attacks. More precisely, the formal verification concerns Vigilant’s
CRT-RSA countermeasure which is designed to sufficiently protect CRT-
RSA implementations against fault attacks. The goal is to formally verify
whether any possible fault injection threatening the pseudo-code is de-
tected according to a predefined attack model.
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1 Introduction

Cryptographic implementations may be subject to physical attacks that disturb
the execution of the embedded code. These attacks aim to disclose sensitive in-
formation or to force malicious behavior of the attacked code. To protect the
implementations against this kind of attacks, countermeasures are designed, im-
plemented and tested using several attack scenarios. To increase the level of
confidence in the correctness of the countermeasure implementation, specific
procedures of code review and cross-review are used. This “manual” verifica-
tion procedure is itself error prone, and in some case its degree of exhaustivity
depends on the time-to-market of the product.

The aim of this work is to provide the crypto-developer with a verification
procedure which will improve the current process of correctness of the counter-
measure with more automation and confidence. An implementation verification
procedure can be seen as a procedure which takes as input an implementation
(or a pseudo-code) with the corresponding countermeasure and outputs a “yes”
or “no” answer. A “yes” answer means that the set of countermeasures present
in the code is efficient enough to detect every possible attack scenario, according
to a predefined attack model for the considered implementation, while a “no”



answer means that the developer has to improve this set in order to include the
missing scenarios.

To the authors’ knowledge, the formal verification of implementations of
countermeasures has not really been the subject of research until now. Several
works have been done on the formal verification of cryptosystems, but generally
focused on the correctness of the cryptographic protocol with respect to its
specification (like [2]) and more recently to its implementation.

Indeed such verification increases confidence in the cryptographic implemen-
tation and excludes flaws due to the weaknesses of the countermeasures.

The goal of this work is to demonstrate the robustness of the countermeasure
with respect to a given attack model. For that, a classical approach consists in
proving that an abstract model of the implementation with its countermeasure
verifies a set of properties. Then using one of the existing approaches (empirical
method, code generation, computational method) to convince the developer that
the verified abstract model is a correct abstraction of the original code. The
approach we take is to follow the developer view, using the source code of the
cryptosystem with its countermeasures. For that, we will use a static analysis
based tool which takes the pseudo-code as an input to the formal verification.
Moreover, we will focus on a well-known cryptosystem, RSA, and more precisely
the algorithm associated to Vigilant’s countermeasure provided in [23].

Attacks based on information gained from the physical implementation of a
cryptosystem, other than brute force or theoretical weaknesses in the algorithms,
are called side channel attacks. Attacks are typically distinguished in passive
(such as timing information, power consumption and electromagnetic leaks) and
active (such as fault injection) attacks.

This paper considers only fault injection attacks and more precisely single
fault injection attacks, i.e. attack scenarios where only one fault is injected.

Structure of the paper

In Sect. 2, fault attacks and some of the CRT-RSA countermeasures are re-
minded. Then the general idea of Vigilant’s countermeasure is briefly presented
in Sect. 3. Section 4 describes our methodology to formally verify an implemen-
tation of a countermeasure and then Sect. 5 presents the formal verification of
the pseudo-code of Vigilant’s countermeas ure as well as its results.

2 Fault attacks and countermeasures on CRT-RSA

This Section is a short introduction to fault injection attacks, and especially
attacks targeting the CRT-RSA algorithm.

2.1 Fault injection attacks

Fault attacks consist in tampering with a device in order to have it perform some
erroneous operations, hoping that the result of that erroneous behavior will leak
information about the involved secret parameters.



The fault attacks in a specific code can be seen either as modifications of a
specific variable or as modifications of code instructions (including modifications
on the execution flow and logical level modifications). The former one concerns
attacks that aim to trouble on the value of a register, while the later one concerns
attacks on the instructions of the code. In [4], Bar-El and al. present various
methods to induce faults and exploit such errors, and give several examples of
both attacks and countermeasures.

Modifying a variable with a fault injection can be seen as adding new in-
structions that assign an arbitrary value to this variable. In the same vein, mod-
ifications of code instructions are simulated by a goto instruction. Formalizing
modifications of instructions requires the formalization of the program execu-
tion, and this will be part of a future extension of this work. However, a first
attempt to modelize thin kind of modifications, and especially the jump attacks,
one can find in [6].

The methodology proposed in Sect. 4 aims to guarantee the validity of a coun-
termeasure pseudo-code where the effect of the attack is the value modification
of a variable.

Therefore, the level of the details provided in the pseudo-code is relevant with
respect to the formalism. For example, the result of a formal verification can be
different for a pseudo-code where the smallest manipulated variables are large
integers, compared to a pseudo-code where the smallest variables are arrays of
bits (or words) in a lower-level implementation. Indeed, the second pseudo-code
would contain more steps including all multi-precision integers operations. And
these extra steps would represent more locations for fault injections. Therefore
the formal verification should be applied to a pseudo-code as fine as possible, in
order to give the best confidence.

A fault can then be characterized by different aspects, like the number of
affected bits, but also error location, time of occurrence and persistence. The
different fault models are summarized in Table 1.

Precise Bit Single Bit Byte Random Arbitrary
Fault Model Fault Model Fault Model Fault Model Fault Model

control on complete loose loose loose loose/no
location (chosen bit) (chosen variable)

control on precise no no no no
timing

number of 1 1 8 random random
affected bits

fault type bit set or reset bit flip random random unknown

persistence permanent permanent permanent permanent permanent
and transient and transient and transient and transient and transient

Table 1. Fault models



2.2 Countermeasures on CRT-RSA

Focusing now to the CRT-RSA algorithm, as a signing procedure and some
already known countermeasures used to protect it.

Let N = p · q be a product of two large prime numbers. To sign a message
m, one first computes Sp = md mod p and Sq = md mod q and then uses the
Chinese Remainder Theorem (CRT) to build the signature S = md mod N
(this is done by computing S = (Sp · q · (q−1 mod p) + Sq · p · (p−1 mod q))
mod N).

CRT-RSA is especially susceptible to software or hardware errors. Boneh,
DeMillo and Lipton were the first to present a fault attack on RSA in both
standard and CRT mode [7]. In the case of the CRT-RSA algorithm, if a fault is
induced during the computation of Sp (respectively Sq), then an erroneous value
S′p (resp. S′q) is used during the CRT-recombination leading to an erroneous
signature S′. As S ≡ Sp mod p and S ≡ Sq mod q, we now have S′ ≡ S mod q
(resp. S′ ≡ S mod p), but S′ 6≡ S mod p (resp. S′ 6≡ S mod q). Therefore, if
p - (S − S′) then the secret parameter q can be easily obtained by computing
gcd(S − S′, N). The other secret parameters of the private key p, dp(= e−1

mod (p − 1)), dq(= e−1 mod (q − 1)), iq(= q−1 mod p) can then easily be
computed.

An improvement of this attack comes later on by Lenstra in [19]. He claims
that if a fault is induced during the computation of Sp then S′

e ≡ m mod q but
S′

e 6≡ m mod p. Therefore the secret parameter q can be obtained by computing
gcd(S′

e − m,N). The advantage of this attack comparing to the previous one
is that now only one execution of the cryptographic algorithm is required to
recover the private key.

However, for the above attacks, the attacker needs to know the whole mes-
sage. Some efforts have already been done for attacks without the need of know-
ing it. As for example, the one of Coron and al. in [12].

An obvious countermeasure against these attacks is to verify the signature
by using the public key (e,N). Usually e is small (for example 216 + 1), but this
method may be very costly when e is large as it implies a second exponentiation.
Moreover, the public exponent is not always available.

Since the publication of this attack, a large variety of countermeasures have
been published in the field. The first method was proposed by Shamir in [22].
Shamir suggests to choose a small integer r, then compute Spr = md mod pr
and Sqr = md mod qr and ensure the integrity of these two exponentiations
by testing whether Spr ≡ Sqr mod r before combining Spr and Sqr with the
CRT formula. However, Aumüller and al. in [3] show that this method does
not protect the CRT recombination and propose an implementation that also
protects the CRT recombination. As opposed to Shamir’s method, only dp and
dq (and not d) are required. This solution gives good performance, as comparing
to the classical CRT-RSA implementation, only two extra exponentiations and
a few modular reductions are required. The main disadvantage of this method:
it requires an extra prime parameter. There are already many improvements of
Shamir’s method, such as the one proposed by Vigilant in [23]. After some flaws



discovered, [11] presents an improvement of this algorithm giving two possible
attacks and the corresponding countermeasures. The first attack concerns a fault
that changes the last “mod N” operation, while the second one concerns the way
that p − 1 (resp. q − 1) is computed/stocked. The first attack does not apply
to the case of our model (due to the impossibility of implementing a “mod 0”
operation, see later on for more details about the model used). The second attack
demands a different implementation than the one presented in [23]. As said in
Sect. 1, the results of our method are specific to the implementation verified
and can be different for different implementations of the same algorithm. As we
want to verify the original implementation of [23], this paper verifies Vigilant’s
algorithm as described in [23] against fault attacks.

Another protection has been proposed by Giraud in [15] in which the fault
detection comes from the exponentiation algorithm. Actually, by using the Mont-
gomery powering ladder to compute md mod N , both values md mod n and
md−1 mod N are available at the end of the computation. These values can
then be used to verify the integrity of the exponentiation. In [8], Boscher and
al. also proposed a countermeasure where the detection comes from another ex-
ponentiation algorithm. Finally, Rivain proposed a detection method based on
addition chains in [21].

Examples of pseudo-codes for implementing the countermeasures were only
provided by Aumüller and al. in [3] and by Vigilant in [23]. This paper studies
the pseudo-code provided by Vigilant.

3 Vigilant’s CRT-RSA countermeasure

Vigilant’s countermeasure is a method to protect a modular exponentiation
against fault attacks. This method can be efficiently used for protecting CRT-
RSA on embedded devices, since it does not require the public exponent, neither
precomputation, nor extra parameters.

Protecting an exponentiation S = md mod N against fault attacks consists
in computing md mod N in ZN ·r2 where r is a small random integer co-prime
with N . The message m is transformed into m′ such that:

m′ ≡
{

m mod N
1 + r mod r2

This implies that

S′ = m′
d

mod Nr2 ≡
{

md mod N
1 + d · r mod r2

So, a consistency check of the result S′ can be performed modulo r2 from d and
r. If the verification S′ mod r2 = 1 + d · r mod r2 is successful, then the final
result S = S′ mod N is returned.

This secure exponentiation can be applied to RSA with CRT. The principle
is to perform two exponentiations modulo p · r2 and q · r2 (so we obtain Sp and



Sq respectively) and then perform a final consistency check after recombination,
guaranteeing that no error occurred during the computation of Sp or Sq and
during the recombination.

Algorithm 1 presents the pseudo-code of Vigilant’s implementation as pro-
vided in [23].

Algorithm 1 Vigilant’s CRT-RSA implementation code

1: Input: message m, e, key (p, q, dp, dq, iq)
2: 32-bit random integer r
3: 64-bit random integers R1, R2, R3, R4

4: Output: signature S = md mod N

5: p′ = p · r2
6: mp = m mod p′

7: ipr = p−1 mod r2

8: βp = p · ipr
9: αp = (1− βp) mod p′

10: m̂p = (αp ·mp + βp · (1 + r)) mod p′

11: if (m̂p 6= m mod p) then return error
12: d′p = dp +R1 · (p− 1)

13: Spr = m̂
d′p
p mod p′

14: if (d′p 6= dp mod (p− 1)) then return error
15: if (βp · Spr 6= βp · (1 + d′p · r) mod p′) then return error
16: S′p = Spr − βp · (1 + d′p · r)−R3

17: q′ = q · r2
18: mq = m mod q′

19: iqr = q−1 mod r2

20: βq = q · iqr
21: αq = (1− βq) mod q′

22: m̂q = (αq ·mq + βq · (1 + r)) mod q′

23: if ( m̂q 6= m mod q) then return error
24: if (mp mod r2 6= mq mod r2) then return error
25: d′q = dq +R2 · (q − 1)

26: Sqr = m̂
d′q
q mod q′

27: if (d′q 6= dq mod (q − 1)) then return error
28: if (βq · Sqr 6= βq · (1 + d′q · r) mod q′) then return error
29: S′q = Sqr − βq · (1 + d′q · r)−R4

30: S = S′q + q · (iq · (S′p − S′q) mod p′)
31: N = p · q
32: if (N · [S −R4 − q · iq · (R3 −R4)] 6= 0 mod Nr2) then return error
33: if (q · iq 6= 1 mod p) then return error
34: return S mod N

This implementation has many advantages:



– no need of special hypotheses for r. However, in [23] we can find some rec-
ommendations about r, such that iq 6= 0 mod r, r should be odd, at least a
32-bit random integer and as large as possible

– no precomputation is needed
– only p, q, dp, dq, iq, and m are needed for the calculation

4 Formal verification of implementations of
countermeasures

The aim of this work is to formally verify the resistance of the pseudo-code
described in Algorithm 1 against fault attacks. The goal is to build a formal en-
vironment that will allow the cryptographic engineer to introduce his secure code
and check the validity of his countermeasure. The main steps of the verification
procedure to follow are:

1. define the implementation that we want to verify with the corresponding set
of countermeasures

2. choose a fault model
3. simulate every possible injected fault with respect to this fault model
4. inject this fault model to the original source code implementation
5. model the property corresponding to the verification
6. use a tool to generate some proof obligations corresponding to the property

to prove
7. prove these obligations (either automatically or using a proof assistant)

For the verification part of our work, we use a static analysis based tool,
named frama-C [14], that will allow to perform an analysis of the source code
without executing it. The source code will then correspond to the implementation
of the cryptosystem with its countermeasures along with a simulation of the
chosen fault model.

4.1 Frama-C

Frama-C [14] is an open source extensible platform dedicated to source code
analysis of C software. The frama-C platform gathers several static analysis
techniques into a single collaborative extensible framework. The collaborative
approach of frama-C allows static analyzers to build upon the results already
computed by other analyzers in the framework.

In addition, frama-C verifies some “safety properties” like the division by
zero or loop’s termination and correctness.

One of the advantages of frama-C, against other tools of static analysis or
even bug-finding tools, is that it allows its user to manipulate functional specifi-
cations, and to prove that the source code satisfies these specifications written in
a dedicated language ACSL [1] (ANSI/ISO C Specification Language, a behav-
ioral specification language for C programs). ACSL is a language of annotations,
threatened as standard comments by the C compiler, that allows the user to



express the above specifications in such a way that they do not affect a normal
execution of the implementation but they are verified by frama-C.

Frama-C is a plugin system. In order to perform a verification, we use Jessie
[17], the deductive verification plugin of C programs annotated with ACSL. It
uses internally the languages and tools of the Why platform [24] 1. The Jessie
plugin uses Hoare-style [16] weakest precondition computations to formally prove
ACSL properties. The generated verification conditions can be submitted to
external automatic provers such as Simplify, Alt-Ergo, Z3, CVC3.

For more complex situations, interactive theorem provers, like Coq, PVS,
Isabelle/HOL, can be used to establish the validity of the verification conditions.

The aim of the work presented in this paper is the verification of a C code
including a cryptographic implementation and a simulation of all possible fault
attacks. For this, Jessie needs as input this transformed code and outputs the
proof obligations to verify using an automatic or an interactive prover. The user
is then free to exploit these results.

4.2 Fault model

As this is a first attempt to formally verify a cryptographic implementation, we
have chosen a quite simple fault model which is still realistic, but different from
the one described in [23]. The two models are clearly not equivalent. However,
the verification procedure is still the same for other models and it will be part
of our future work.

In the original fault model, the attacker can:
– inject only one fault per execution
– modify a value in memory obtaining a totally random result uncorrelated to

the original value (known as permanent fault)
– modify a value when it is handled in local registers, without modifying the

global value in memory. The handled value obtained is fully random from
the attacker point of view and uncorrelated to the original value (known as
transient fault)

but the attacker cannot:
– modify the code execution. Processor instructions cannot be replaced or

removed while executing code
– inject a permanent fault in the input elements, the message m or the key

(p, q, dp, dq, iq)
– change the boolean result of a conditional check. An expression “if a = b”

has a result true or false that cannot be modified.
Our fault model is based on the above with three differences. We consider that
the attacker :
– can modify the value in memory but by only setting the value to 0 (in the

case of the pseudo-code, this corresponds to set the whole variable to 0)

1 WHY is a general-purpose verification condition generator, which is used as a back-
end by other verification tools but which can also be used directly to verify programs.
WHY produces verification conditions from annotated programs given as input.



– can inject a permanent fault in the input elements, the message m as well
as the key (p, q, dp, dq, iq)

– cannot inject a fault in m at the very beginning (i.e. before line 1 of the
Algorithm 1) of the implementation.

4.3 Fault injection simulation

Once the fault model is chosen, it must be injected in the initial code of the
implementation. This simulation consists in setting the value of the “attacked”
variable to 0, for every possible fault. Obviously such a modeling creates a lot
of cases to verify. The number of the cases increases according to the number of
the code instructions and the variables used in it. Thus, for codes that describe
real cryptographic implementations, this modeling may become very huge and
so, quite inefficient.

For that we introduce an optimization by defining some equivalence classes
between attacks that have the same effects. To do so, we use the notions of read
and write for any variable used in the code. The general idea is to characterize
every line of the original code by a read, write, read/write, ∅ type according
to the actions occurred to the variables appeared in it. The read (resp. write)
type means that the considered code line reads (resp. writes) the variable. The
read/write type means that the code line performs a read and a write operation
(as for example, for the variable var in the instruction var = var + 1). The ∅
means that no operation is performed concerning this variable. Let Type(var,i)
define the characterization of the variable var on line i.

We then determine the next use of a variable var with the help of the following
definition.

Definition 1. Let consider that we start our analysis from the line i, NextType
(var, i) is the next found typed line using var and is defined as follows:

NextType (var, last) = ∅

NextType(var, i) =

{
Type(var, i) , if Type(var, i) 6= 0
NextType(var, i + 1) , otherwise

where last is the last line of the source code.

The different types are illustrated in a simple example in Table 2.

Attacks on code with sequential control flow. To simplify, let’s first
focus to a code without any loops nor conditionals. For such a code, the equiv-
alence classes correspond to the minimal code to verify in order to ensure a
security property. In fact, the class of the original source code includes all the
attacked codes for which the attack is useless. Formally, we have:

Lemma 1. If NextType(var, i) ∈ {write, ∅}, then an attack on var injected
at line i is useless and equivalent to the original source code.



1: int example(int a, int b){
2: int x = 0; // Type (x,2) = write On line 2, the use of x is of type

“write”.
3: a = a + 1; // Type (a,3) = read/write On line 3, the use of a is of type

“read” and “write”.
// NextType (x,3) = write On line 3, the next use of x is of

type “write” (on line 4).
// NextType (a,3) = read On line 3, the next use of a is of

type “read” (on line 4).
4: x = a + b; // NextType (x,4) = ∅ On line 4, there is no next use of x.
5: }

Table 2. Code example

Obviously, if the next use of var is “write”, the operation performed will have
no effect to the value of var stored in memory. Contrary to the cases that the
next use of var is “read” or “read/write” where the following lemma is applied:

Lemma 2. If NextType(var, i) ∈ {read, read/write} and j the line that rep-
resents the next use of the variable var, then an attack on var injected at the
interval [i, j] has exactly the same effect on var than an attack injected at line
j, but has no effect between lines i and j − 1.

The aim of these two lemmas is to separate the useful attacks from the useless
ones, i.e. the attacks that have an effect on the code from the ones that have no
effect. It reduces the number of the attacks so that only useful attacks are kept.
These two lemmas are summarized to the following theorem (we recall that for
the moment we have a code with no loop and no conditionals):

Theorem 1. If there are n read and read/write operations on the code for one
variable, the minimal number of faults with different effect for this variable is
n + 1 (i.e. one attack for every read and read/write operation plus the original
code-without faults injection).

Attacks on code with conditionals and loops. Let us now consider the
case of a source code with conditionals and loops. The type of any line can be
defined in the same way as for any other line of a non conditional code, thus
Lemma 1 remains valid.

We first deal with the conditional instructions (an if-then-else structure).
This part of code can be decomposed in three parts: the condition, the then-
block and the else-block (which can be empty). It is possible to inject attacks at
either the condition or the then/else-block.

As in the case of code with sequential control flow, we inject an attack before
any read operation of every variable.

However, as we want to minimize the number of injected attacks, if no read
operation happens during the if-condition and a read operation happens in both
the then and the else block, instead of injecting an attack at both correspond-
ing lines, we can inject an attack before the if-condition when no operation is



performed between the if-condition and both these reads. An example is given
in Fig. 1. This can be done only in the case of fault models where the fault is
always of the same nature. An example of this kind of fault model is the one
studied in this paper, which consists on setting a value to 0. An example of fault
model that we cannot apply this optimization is the fault model which sets a
value to a random value. This is because every fault injection can correspond to
another random value.

1: int example if(int x, int y){
2: if (y > 0 ) // condition
3: {y = x; } // then-block
4: else y = −x; // else-block
5: return y;
6: }

Fig. 1. Code example with conditionals (considering attacks on variable x). For the
fault model consisting on setting a value on 0, instead of injecting two attacks in both
lines 3 and 4, we can inject one and only attack in line 2.

In the same vein, for the loop instructions, we inject an attack before any
read operation of every variable.

4.4 Adding the fault model to the implementation

Before starting the verification, the simulated fault model will be added to the
original code. For that, an additional variable is used, named f , which represents
the faults. All possible attacks are finally introduced in such a way that this part
of code will be executed once the corresponding simulated attack occurs.

As an example, one can see Figure 2. In this example, a fault consists on
setting the value of a variable to 0. The lines 1, 6, 11 and 12 of the transformed
code are equivalent to the initial code, while both the lines 3 and 8 represent
attacks to the variable x, and lines 4 and 9 attacks to the variable y. Lines 2 to
5 describe all possible attacks for the instruction at the line 6, while lines 7 to
10 describe all possible attacks for the return statement at line 11.

Similarly, all possible attacks (w.r.t. the fault model) can be simulated and
induced into the original code. Currently, the process of generating automatically
the simulation into the original code is a work in progress.

4.5 Modeling the main property

The goal of the verification is to prove, for a given implementation, the validity
of a set of countermeasures with respect to a set of attacks (for a given attack
model). In other words, given an implementation and a set of countermeasures,



1: int example(int x, int y, int f){

2: x = y;

3: return x;
4: }

(a) initial code

1: int example(int x, int y, int f){
2: switch(f){
3: case 1 : x = 0; break;
4: case 2 : y = 0; break;
5: }
6: x = y;
7: switch (f) {
8: case 3: x = 0; break;
9: case 4: y = 0; break;
10: }
11: return x;
12: }

(b) transformed code

Fig. 2. An example of a fault injection in the code

we want to prove whether any attack by fault injection (w.r.t. the attack model)
is detected (an error flag is raised).

For the fault model studied in this paper, this means that the output of any
execution of the given code is either the expected result or the error flag. As we
cannot know in advance the expected result, we have to express it in terms of a
function using the entry variables. The property to prove is then summarized to
the Theorem 2.

Theorem 2. Let f ∈ {0} ∪ F , where F is the set of faults for the current im-
plementation and f = 0 the original execution of the implementation (without
injected faults). Let also res be the output of the implementation, x1, ..., xn be
the n variables of the input of the implementation and g a function. Then :

[(f = 0)⇒ (res = g(x1, ..., xn))] AND [(∀f ∈ F )⇒ (res = ERROR)]

When the output is the error flag, it means that the countermeasures are
robust in the sense that they detect any fault injection (according to the model).

5 Formal verification of the pseudo-code of Vigilant’s
countermeasure

The following section describes the use of the presented approach to the pseudo-
code of Vigilant’s countermeasure. The verification is based on the procedure
described in Sect. 4.

As described in Sect. 4.2, the fault model we use is the following:
An attacker can:
– inject only one fault per execution
– modify the value in memory by setting the value to 0
– inject both transient and permanent faults to any variable



but (s)he cannot:
– modify the code execution
– inject a fault in m at the very beginning (that is before line 1 of the Algo-

rithm 1) of the implementation.
– inject a fault in S at the very end (i.e. after line 31 of the Algorithm 1) of

the implementation
– change the boolean result of a conditional check. An expression “if a = b “

has a result true or false that cannot be modified.
For the pseudo-code of Vigilant’s CRT-RSA algorithm presented in [23], un-
der the above assumptions and using the procedure described in this paper, 95
possible faults are obtained. These faults are presented in the Appendix A.

Some additional hypotheses have to be made:
– m mod p 6≡ 0 and m mod q 6≡ 0
– r is odd and iq 6≡ 0 mod r as it is recommended in [23]
– gcd(p, r2) = 1 and gcd(q, r2) = 1, for the efficiency of the computation of ipr

and iqr respectively
Once every possible fault is injected using the method described in Sect. 4

and with respect to the above fault model, we call the frama-c platform with
the jessie plugin to run the verification procedure of the property of Theorem 2.

The results of this verification indicate some cases of faults (the underlined
cases in Algorithm 2 of Appendix A) that are not detected by the given coun-
termeasures.
“Sensitive” cases are separated in three main categories:
– The first category contains cases with success probability one (that means

that such a fault will never be detected). These cases (cases 19, 36, 60 and
77 in Algorithm 2) correspond to faults on the random values R1, R2, R3

and R4 and concern the randomization of some variables. In these cases,
the output is the real signature and no information about the secret values
is obtained. Hence, these cases are of a real interest as we can expect the
same behavior whenever a random value appears. However, whenever we
obtain the valid signature, the attacks presented in Sect. 2.2 are no more
applicable. (Depending on the fault model this can give some information to
the attacker about the attacked variable)

– The second (and the bigger) one contains cases with a weak success proba-
bility. (Noting |x| the size of x)

- For the cases 6, 8, 13, 27, 29, 33, 34, 41, 44, 46, 51, 68, 70, 74, 75, 79,
82, 87, 88 and 91, the probability that an injected fault is undetectable
is 2−2|r|+1.

- For the cases 22, 28 and 32, this probability is 2−(|p
′|−1)ln2.

- For the cases 63, 69 and 73, this probability is 2−(|q
′|−1)ln2.

We notice here that frama-C tool cannot manipulate probabilities. The prob-
abilities mentioned here are manually calculated (see Appendix B for more
details).

– The last category contains cases with a high success probability (in this case
1) and where the output is a faulty signature. These are the most dangerous
cases as we can extract information about the secret values. These cases



are: 18 and 59 and correspond to permanent faults on dp and dq during the
computation of d′p and d′q respectively. In case 18 (respectively 59), we obtain
a faulty signature modulo p (resp. modulo q) and the right one modulo q
(resp. modulo p). So it will be easy for the attacker to compute q (resp. p)
and then the other secret parameters. Indeed as already said, our fault model
allows permanent faults on dp and dq, contrary to the original fault model.
This fault model difference is of prime importance for our results here.

6 Related work

To our knowledge, the use of frama-C for the verification of countermeasures is
novel, but other uses of frama-C already exist. In [13], one can find the results of
a formal verification of source code of a model of automaton in SAM language
and its C language implementation, obtained using frama-C and Caveat. In [9],
one can find a formal proof of correctness of the key commands of the SCHUR
software, which is an interactive program for calculating with characters of Lie
groups and symmetric functions. Another example of a use of frama-C is [5]
which is about verification of some interval security properties for smart card C
codes using value analysis.

Other verification techniques, such as model checking, are also quite common
to verify temporal properties in programs. In [18], such a verification concern-
ing safety properties can be found, while in [10], one can find the results of a
verification of a real system using MOPS - a tool for software model checking
security-critical applications-. Although model checking is fully automated, it
is limited to simple implementations due to the exhaustive exploration of the
model.

Another remarkable effort on verifying programs with the presence of faults
is made in [20] (thank to the anonymous reviewer for this citation), where the
authors have developed a new logic for reasoning about faults.

7 Conclusion and perspectives

Vigilant’s countermeasure is a countermeasure protecting modular exponenti-
ations against fault attacks that was applied to CRT-RSA. In this paper, we
have presented the results of the formal verification of the resistance of the
pseudo-code provided in [23] against fault attacks, with respect to the fault
model described above.

The obtained results are very promising. The approach has been developed
with a simple fault model. The goal now is first to evaluate the pertinence of this
fault model with the crypto-developers. Then, we plan to extend this method
to other fault models and to double fault attacks. This work will continue along
with experimentations on other cryptographic countermeasures. More practical
steps are also planned, such as improving the automation in order to provide
crypto-developers with a full validation environment.
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5. P. Berthomé, K. Heydemann, X. Kauffmann-Tourkestansky, and J.-F. Lalande.
Attack model for verification of interval security properties for smart card C codes.
In Proceedings of the 5th ACM SIGPLAN Workshop on Programming Languages
and Analysis for Security, PLAS ’10, pages 2:1–2:12, New York, NY, USA, 2010.
ACM.
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A Vigilant’s CRT-RSA implementation code with fault
simulation

Algorithm 2 Vigilant’s CRT-RSA implementation code with fault sim-
ulation
1: Input: message m, e, key (p, q, dp, dq, iq)
2: 32-bit random integer r
3: 64-bit random integers R1, R2, R3, R4

4: an integer f
5: Output: signature S = md mod N

6: switch (f) {
7: case 1 : p = 0
8: case 2 : r = 0
9: }

10: p′ = p · r2
11: switch (f) {
12: case 3 : p′ = 0
13: }
14: mp = m mod p′

15: switch (f) {
16: case 4 : p = 0
17: case 5 : r = 0
18: }
19: ipr = p−1 mod r2

20: switch (f) {
21: case 6 : ipr = 0
22: case 7 : p = 0
23: }
24: βp = p · ipr
25: switch (f) {
26: case 8 : βp = 0
27: case 9 : p′ = 0
28: }
29: αp = (1− βp) mod p′

30: switch (f) {
31: case 10 : αp = 0
32: case 11 : mp = 0
33: case 12 : p′ = 0



34: case 13 : βp = 0
35: case 14 : r = 0
36: }
37: m̂p = (αp ·mp + βp · (1 + r)) mod p′

38: switch (f) {
39: case 15 : m̂p = 0
40: case 16 : m = 0
41: case 17 : p = 0
42: }
43: if (m̂p 6= m mod p) then return error
44: switch (f) {
45: case 18 : dp = 0
46: case 19 : R1 = 0
47: case 20 : p = 0
48: }
49: d′p = dp +R1 · (p− 1)
50: switch (f) {
51: case 21 : d′p = 0
52: case 22 : m̂p = 0
53: case 23 : p′ = 0
54: }
55: Spr = m̂

d′p
p mod p′

56: switch (f) {
57: case 24 : d′p = 0
58: case 25 : dp = 0
59: case 26 : p = 0
60: }
61: if (d′p 6= dp mod (p− 1)) then return error
62: case 27 : βp = 0
63: case 28 : Spr = 0
64: case 29 : d′p = 0
65: case 30 : r = 0
66: case 31 : p′ = 0
67: if (βp · Spr 6= βp · (1 + d′p · r) mod p′) then return error
68: switch (f) {
69: case 32 : Spr = 0
70: case 33 : βp = 0
71: case 34 : d′p = 0
72: case 35 : r = 0
73: case 36 : R3 = 0
74: case 37 : p′ = 0
75: }
76: S′p = (Spr − βp · (1 + d′p · r)−R3) mod p′

77: switch (f) {
78: case 38 : q = 0
79: case 39 : r = 0
80: }
81: q′ = q · r2
82: switch (f) {
83: case 40 : q′ = 0
84: case 41 : m = 0
85: }
86: mq = m mod q′



87: switch (f) {
88: case 42 : q = 0
89: case 43 : r = 0
90: }
91: iqr = q−1 mod r2

92: switch (f) {
93: case 44 : iqr = 0
94: case 45 : q = 0
95: }s
96: βq = q · iqr
97: switch (f) {
98: case 46 : βq = 0
99: case 47 : q′ = 0
100: }
101: αq = (1− βq) mod q′

102: switch (f) {
103: case 48 : αq = 0
104: case 49 : mq = 0
105: case 50 : q′ = 0
106: case 51 : βq = 0
107: case 52 : r = 0
108: }
109: m̂q = (αq ·mq + βq · (1 + r)) mod q′

110: switch (f) {
111: case 53 : m̂q = 0
112: case 54 : m = 0
113: case 55 : q = 0
114: }
115: if ( m̂q 6= m mod q) then return error
116: case 56 : mp = 0
117: case 57 : mq = 0
118: case 58 : r = 0
119: }
120: if (mp mod r2 6= mq mod r2) then return error
121: switch (f) {
122: case 59 : dq = 0
123: case 60 : R2 = 0
124: case 61 : q = 0
125: }
126: d′q = dq +R2 · (q − 1)
127: switch (f) {
128: case 62 : d′q = 0
129: case 63 : m̂q = 0
130: case 64 : q′ = 0
131: }
132: Sqr = m̂

d′q
q mod q′

133: switch (f) {
134: case 65 : d′q = 0
135: case 66 : dq = 0
136: case 67 : q = 0
137: }



138: if (d′q 6= dq mod (q − 1)) then return error
139: case 68 : βq = 0
140: case 69 : Sqr = 0
141: case 70 : d′q = 0
142: case 71 : r = 0
143: case 72 : q′ = 0
144: if (βq · Sqr 6= βq · (1 + d′q · r) mod q′) then return error
145: switch (f) {
146: case 73 : Sqr = 0
147: case 74 : βq = 0
148: case 75 : d′q = 0
149: case 76 : r = 0
150: case 77 : R4 = 0
151: case 78 : q′ = 0
152: }
153: S′q = (Sqr − βq · (1 + d′q · r)−R4) mod q
154: switch (f) {
155: case 79 : S′q = 0
156: case 80 : q = 0
157: case 81 : iq = 0
158: case 82 : S′p = 0
159: case 83 : p′ = 0
160: }
161: S = S′q + q · (iq · (S′p − S′q) mod p′)
162: switch (f) {
163: case 84 : p = 0
164: case 85 : q = 0
165: }
166: N = p · q
167: switch (f) {
168: case 86 : N = 0
169: case 87 : S = 0
170: case 88 : R4 = 0
171: case 89 : q = 0
172: case 90 : iq = 0
173: case 91 : R3 = 0
174: case 92 : r = 0
175: }
176: if (N · [S −R4 − q · iq · (R3 −R4)] 6= 0 mod N · r2) then return error
177: case 93 : q = 0
178: case 94 : iq = 0
179: case 95 : p = 0
180: if (q · iq 6= 1 mod p) then return error
181: return S mod N



B Details concerning the success probabilities of fault
attacks

In this Appendix, we would like to give more details about the computation of
the probabilities presented in Sect. 5. Noting |x| the size of x.

Assume that the attacker modifies value A (A = B mod C) and that C is
a uniform, t-bit integer. We suppose that C is odd (r is odd according to the
recommendations in Sect. 5, as well as p and q) and we force 2t−1 < C < 2t.
Note S = {C : 2t−1 < C < 2t and C = 1 mod 2}.

We note U the event that the fault is undetected and F the event of taking
an element c in S s.t. c = C. So, Pr[U |F ] is the probability that an event is
undetected assuming F . Since the final result will depend only on the initial
values which are uniformly distributed (the only exception may be the message
m. To avoid this case, we can assume that the message used is the message
obtained after a padding - like OAEP-. So the resulted m will also be uniformly
distributed), we know that:

Pr[U |F ] =
1

C
and Pr[F ] =

1

|S|

and then

Pr[U ] =
∑
C∈S

(Pr[U |F ] · Pr[F ]) =
1

|S|
·
∑
C∈S

1

C

Let S = {C : 2t−1 < C < 2t and C = 0 mod 2}, then∑
C∈S∪S

1

C
= [lnC]2

t

2t−1 = ln(2t)− ln(2t−1) = ln2

We consider approximately that |S| = |S|. Then:

Pr[U ] =
1

|S|
·
∑
C∈S

1

C
≈ 1

|S|
· 1

2
·
∑

C∈S∪S

1

C
=

1

|S|
· ln2

2
=

1

2t−2
· ln2

2
= 2−(t−1)ln2

This is the obtained probability for the faults: 22, 28 and 32 with t = |p′|,
63, 69 and 73 with t = |q′|.

Supposing now, that the attacker modifies a value A (A = B mod C2).
Following the same reasoning, we conclude that :

Pr[U ] ≈ 2−2t+1

This is the obtained probability for the faults: 6, 8, 13, 27, 29, 33, 34, 41, 44,
46, 51, 68, 70, 74, 75, 79, 82, 87, 88 and 91 with t = |r|.


