
Noname manuscript No.
(will be inserted by the editor)

How to Reveal the Secrets of an Obscure White-Box
Implementation

Louis Goubin · Pascal Paillier · Matthieu Rivain · Junwei Wang

the date of receipt and acceptance should be inserted later

Abstract White-box cryptography (WBC) protects key

extraction from software implementations of crypto-

graphic primitives. Many academic works have been

done achieving partial results toward WBC, but a com-

plete solution has not been found yet by the cryptogra-

phy community. As a result, the industry can only on

proprietary and non-publicly scrutinized white-box im-

plementations. It is therefore of interest to investigate

the obtainable resistance of an AES implementation to

thwart a white-box adversary in this paradigm. To this

purpose, the ECRYPT CSA project has organized the

WhibOx contest as the catch the flag challenge of CHES

2017. Researchers and engineers were invited to par-

ticipate either as designers by submitting the source

code of an AES-128 white-box implementation with a

freely chosen key, or as breakers by trying to extract the

hard-coded keys in the submissions. The participants

were not expected to disclose their identities or the un-

derlying designing/attacking techniques. In the end, 94

submitted challenges were all broken, and only 13 of

them held more than one day. The strongest (in terms

of surviving time) implementation survived for 28 days

(which is more than twice as much as the second one)

L. Goubin
Laboratoire de Mathématiques de Versailles, UVSQ, CNRS,
Université Paris-Saclay, 78035 Versailles, France
E-mail: louis.goubin@uvsq.fr

P. Paillier · M. Rivain · J. Wang
CryptoExperts, 41 Boulevard des Capucines, 75002 Paris,
France
firstname.lastname@cryptoexperts.com

J. Wang
University of Luxembourg, 6 avenue de la Fonte, L-4364 Esch-
sur-Alzette, Luxembourg
Unversity Paris 8, 2 rue de la Liberté, 93526 Saint-Denis,
France
E-mail: junwei.wang@cryptoexperts.com

It was only broken by the authors of the present paper

with reverse engineering and algebraic analysis. In this

paper, we give a detailed description of the different

steps of our cryptanalysis. We then generalize it to an

attack methodology to break further obscure white-box

implementations. In particular, we formalize and gener-

alize the linear decoding analysis that we use to extract

the key from the encoded intermediate variables of the

target challenge.

Keywords White-Box Cryptography, WhibOX Con-

test, Linear Decoding Analysis, Reverse Engineering

Acknowledgements The fourth author has received funding
from the European Union’s Horizon 2020 research and inno-
vation programme under the Marie Sk lodowska-Curie grant
agreement No. 643161.

1 Introduction

1.1 White-Box Cryptography

Recently, security critical applications, such as digital

right management (DRM) systems and mobile payment

services, have known a fast development and wide de-

ployment on consumer electronic devices. New threats

must then be considered by security designers and an-

alysts, since these applications are usually hosted on

untrusted environments and/or the users themselves

might represent potential attackers. Ultimately, one has

to consider an adversary that can access the software

(on in particular cryptographic implementations) as a

white box. Generally, she could arbitrary pick the in-

puts for the software and collect all the outputs and

all the runtime information, such as the addresses and

values of accessed memory; she could also tamper with

mailto:pascal.paillier@cryptoexperts.com,matthieu.rivain@cryptoexperts.com,junwei.wang@cryptoexperts.com

2 Louis Goubin et al.

the implementations, e.g., altering the control flows and

injecting faults. Cryptographic algorithms are usually

involved in these contexts to assure the confidential-

ity, integrity and authenticity in several aspects. If the

key embedded in a underlying implementation was ex-

tracted by the attacker (and several security features

were compromised at the same time), not only could

the pursued security goal be lost, but the associated

business also could be threatened. Accordingly, it is

reasonable to investigate her capability and the coun-

termeasures to prevent key exposure. As one of the key

components in the protections of real world applica-

tions, WBC seeks a solution to transform a cryptog-

raphy algorithm with a given key into an obfuscated

implementation that gives no significant advantage to

the white-box adversary compared to the situation in

which she could only access an oracle answering encryp-

tion queries (under the same key).

Historically, the white-box concept was introduced

in two seminal papers by Chow et al. [11, 12] for cryp-

tographic algorithms (DES and AES) used in DRM ap-

plications. The rough idea behind their constructions is

to implement a cipher as a network of precomputed and

randomly encoded look-up tables, such that an adver-

sary is confused by seemingly useless intermediate val-

ues in the memory. Soon, several cryptanalyses broke

the underlying techniques [21, 6], which motivated some

remedial designs [29, 10, 41, 22]. However, these pro-

posals were eventually shown to be vulnerable as well

[19, 40, 32, 30, 25, 31, 24].

On the other hand, not much formalization of white-

box cryptography has been put forward. Two initial

works [38, 15] have introduced some formal white-box

security notions. Specifically, Saxena et al. [38] demon-

strate how to adapt security notions in black-box model

[4] into security notions in white-box model; while [15]

formalizes the basic unbreakability property and sev-

eral other useful notions: one-wayness, incompressibil-

ity and traceability for symmetric ciphers. But the ques-

tion of how to achieve these properties for a standard

symmetric cipher such as AES remains open. Never-

theless, a lot of works [4, 17, 16, 28] have been done on

the related area of indistinguishability obfuscation (iO)

[4, 17, 36, 26, 27]. However, the current constructions

of iO are still impractical and its relation with WBC

requires further theoretical investigation.

Because of the lack of practical and provably secure

solutions, the industry has no choice but to use propri-

etary and non-publicly scrutinized solutions for appli-

cations that need to be protected against key extrac-

tion in pure software. Their security mainly relies on

the secrecy of the related techniques, which contradicts

with the classic Kerckhoffs’s principle in cryptography.

Therefore, the industry can only rely on their current

white-box technologies (combined with other protec-

tions) form a short-term security perspective, and they

replace keys in a rhythm matching with the security

robustness of the implementation.

In the literature, two generic approaches have been

used to break such obscure white-box implementations.

Similarly to differential power analysis (DPA) [23], dif-

ferential computation analysis (DCA) [9] looks for cor-

relation between key-dependent sensitive variables and

computation traces composed of values processed in the

execution of the implementation. On the other hand,

since AES is inherently vulnerable to differential fault

analysis (DFA), it can also be applied to break a ma-

jority of the public implementations [21, 37].

1.2 WhibOx Contest

Although no conclusions have been drawn about the

pursued goals of white-box cryptography in scientific

world, the development of white-box applications con-

tinues to increase. Needless to say, plenty of home-made

solutions sold in the market, which are claimed to be

secure based on the confidentiality of related technolo-

gies and tools, would be fragile in front of a motivated

attacker. In this context, the ECRYPT CSA project

organized the WhibOx workshop [3] to fulfill public

cognition of the academic progress and industrial ex-

periences on white-box cryptography and obfuscation

in 2016. At this occasion, it was suggested to organize

a contest on white-box cryptography to give a play-

ground for “researchers and practitioners to confront

their (secretly designed) white-box implementations to

state-of-the-art attackers” [1]. One year later, the so-

called WhibOx competition was launched by ECRYPT

CSA as the catch the flag challenge of CHES 2017.

In a nutshell, the participants of this contest were

divided into two categories:

- the designers who were invited to submit the source

codes of their white-box implementations of AES-

128 [14] with freely chosen key, and

- the breakers who were challenged to reveal the hid-

den keys in the submitted implementations.

The participants could remain anonymous (based on

a pseudonymity submission system) and they were not

expected to reveal the designing or attacking techniques.

The score system worked as follows: a white-box sub-

mission can accumulate n(n+ 1)/2 strawberry points if

it survives for n days, and once it is broken, the straw-

berry points will decrease symmetrically down to 0. A

How to Reveal the Secrets of an Obscure White-Box Implementation 3

Table 1: Requirements for a valid implementation on a

reference environment mentioned in [1].

C source code ≤ 50MB
compilation time ≤ 100s
executable binary ≤ 20MB
running memory ≤ 20MB
execution time ≤ 1s

designer gets as her final strawberry score the maxi-

mal peaking strawberries among all the challenges sub-

mitted. Similarly, a breaker gets as banana points the

number of strawberry points of a challenge at breaking

time. And she gets her final banana score as the highest

banana score among all her breaks.

In the order to submit a valid challenge, the im-

plementation must fulfill several requirements, recalled

in Table 1, which are relatively looser than that in a

practical scenario.

As a result, the contest successfully attracted 194

players with 94 submitted implementations which were

all broken in the end for a total of 877 individual breaks.

Only 13 implementations survived for more than 1 day.

These results once again demonstrate that the attackers

prevail in the current cat-and-mouse game. Neverthe-

less, many interesting designs were submitted that are

worth further discussion and investigation.

Adoring Poitras. The strongest implementation in terms

of survival time, named Adoring Poitras1, was submit-

ted by Biryukov and Udovenko from the University

of Luxembourg. In the sequel, we sometimes refer to

this implementation as the challenge. Its source code
makes about 28MB. Interestingly, as it includes two

long strings with extended ASCII characters [2], it takes

more than 30 hours for some compilers (e.g. Clang,

which is not the reference compiler) to finish the com-

pilation.2

Recently, the authors of the challenge released an

article [7] about various attack vectors in white-box set-

ting and some prerequisite criteria to thwart these at-

tacks. In particular, they suggest combining some alge-

braically non-linear encoding scheme and classical lin-

ear masking scheme to protect sensitive intermediate

variables, which could leak some designing techniques

of the challenge.

1 The name was generated by the server. Source
code is available at https://whibox-contest.github.io/show/

candidate/777.
2 Experiments are done with Apple LLVM version 9.0.0 on

macOS 10.12 and clang version 3.8.1 on Alpine Linux 3.5.
The latter is the reference OS used by the contest server.

1.3 Our Contribution

This paper explains how we broke Adoring Poitras in

several steps: reverse engineering, SSA transformation,

circuit minimization, data dependency analysis, alge-

braic analysis. These different steps are detailed in Sec-

tion 2. Then Section 3 gives a generalization of our

break. It first depicts a general attack methodology

against obscure white-box implementations and then

formalizes and analyzes the linear decoding analysis that

we developed to break Adoring Poitras (which has proved

resistant against any of our DCA or DFA attempts as

explained in Section 2.6).

2 Breaking Adoring Poitras

We explain in this section how to gradually extract the

key from Adoring Poitras in a few steps. Firstly, we per-

form some reverse engineering on the source code to

remove several obfuscation layers and obtain a Boolean

circuit. Then, we rewrite the Boolean circuit into sin-

gle static assignment (SSA) form which enables us to

minimize it by detecting and removing many interme-

diate variables either constant, or redundant, or pseu-

dorandom (with no impact on the final result). Based

on this minimized Boolean circuit, we conduct a data

dependency analysis to identify some specific encoded

operations (e.g., first round AES s-boxes). Finally, we

perform a generic algebraic analysis based on a linear

decoding assumption which turned out to be true. From

the processed (encoded) data over several executions,

we are able to extract the 16 AES key bytes. Overall, it

took us roughly 200 man-hours (spread over 3 weeks)

to break this challenge: about one third of the time

was spent on reverse engineering; another third was for

data dependency analysis and minimization of the cir-

cuit; and the remaining time was for seeking possible

attacks and applying our algebraic analysis. Undoubt-

edly, we spent a lot of time on investigating reverse

engineering and attack strategies that turned out to

be useless in the end. If we repeated our attack on an

implementation from the same white-box compiler but

for a different key and randomness, we could probably

break it in a few hours (which could be dramatically im-

proved with automatic tools). In the following sections,

we will describe the above steps in detail.

Overview of Original Source Code. A summarized

description of the original source code of the challenge

is listed in Table 2. More specifically, it consists of 2328

lines of code, 1020 function definitions and 12 global

variables. Most of the global variables are pointers, but

one global variable is an array of 210 function pointers

https://whibox-contest.github.io/show/candidate/777
https://whibox-contest.github.io/show/candidate/777

4 Louis Goubin et al.

Table 2: An overview of the source code of Adoring
Poitras.

#lines 2328
#functions 1020
#global variables 12
funcptrs size 210
pDeoW size 221 B
JGNNvi size 15 284 369 B

(funcptrs) and two other global variables pDeoW and

JGNNvi are large arrays with numerous extended ASCII

characters.

2.1 Reverse Engineering

For some reason (e.g., in order to obscure the design

ideas), the source code Adoring Poitras is deliberately

obfuscated with several code obfuscation techniques,

e.g., naming obfuscation, virtualization obfuscation [35].

We will go through how to unpack each obfuscation

layer by reverse engineering. There is no obvious bound-

ary between any two steps. Let us start with readability

processing.

Readability Processing. The names of all the vari-

ables, functions and parameters in the original source

code are obfuscated as shown in Listing 1. Actually,

only 210 of these functions listed in the funcptrs are

invoked in the computation, in other words, nearly 80%

of defined functions are never used. Besides, all these

210 useful functions are duplicate definitions of only 20

functions. With the help of the above observation, we
perform a readability processing of the original code,

including:

– renaming variables, functions and parameters,

– eliminating dummies and duplicates,

– rewriting constants in a meaningful way, and

– combining codes if necessary.

Technically, most of the processing here was handled

manually. In the end, we acquire a source code with

20 easily understood functions shown in Listing 2 (on

Page 6). With the help of some understanding (dis-

cussed in the following sections), these functions can

be classified into several categories: input reading and

output writing, bitwise operations, bit shifts, table look-

ups, assignments, control flow primitives and dummy

functions. We will refer to their names in the following

if necessary.

De-Virtualization. After the readability processing,

the source code is much easier to understand, and we

can observe that the overall program relies on a vir-

tual machine as illustrated in Listing 3 (on Page 7),

which is a common obfuscation technique in modern

software protection and malwares [35]. Specifically, the

authors of the challenge implemented a virtual environ-

ment with an interpreter of a bytecode program. The

program is a sequence of instructions, each of which is

either a conditional jump to a previous instruction or a

function call written in the following format:3

[#args][funcptrs idx][args list],

where [#args] is one byte indicating the number of

arguments, [funcptrs idx] is one byte giving the in-

dex of the called function within the array of function

pointers (i.e. the global variable funcptrs), and [args

list] is the sequence of arguments, each taking eight

bytes. In the runtime, the interpreter loads an instruc-

tion, then translates it into a function call with corre-

sponding arguments.

In order to remove this virtualization layer, we con-

struct a new equivalent program in C language by sim-

ulating the interpreter. In detail, after the decoding of

all the instructions, we rewrite the conditional jumps

as do ... while loops, and construct function calls with

their arguments from the bytecode program. We thus

get a C program composed of do ... while loops and

some calls to the 20 useful functions with hard-coded

arguments.

Simplification of the Bitwise Program. The overall

structure of the bitwise program is shown in Code 1 (on

Page 5). The default data type is unsigned 64-bit inte-

ger (uint). The program contains a globally-accessible

table T (renamed from pDeoW) of 218 64-bit words (i.e.,

221 bytes) initialized to some hard coded values. In the

beginning of the program, each bit bi is expanded to

a full word (by the operation −bi mod 264) which is

assigned to some location addri,1 in T . Then, each ex-

panded bit T [addri,1] is copied to 63 locations

addr
(1)
i,1 , addr

(2)
i,1 , · · · , addr

(63)
i,1

in the table, where

addr
(n)
i,1 = addri,1 + 212 · n mod 218.

Then the program performs a sequence of 2573 bitwise

operation loops, followed by one bit combination loop

(pictured in Code 3 on Page 8), then by 9 additional

3 In fact, the conditional jump is is also implemented as
a function in the same format (see goto func and jump if

functions above). Particularly, it is used for simulating the
do ... while loop in a high-level language, where the first two
arguments are used for condition checking and the third ar-
guments is the destination.

How to Reveal the Secrets of an Obscure White-Box Implementation 5

Listing 1: Examples of naming obfuscated functions

1 void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZq) {

2 if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))

3 EWwon (vzJZq);

4 }

5

6 void rNUiPyD (uint hFqeIO, uint jvXpt) {

7 xkpRp[hFqeIO] = MXRIWZQ (jvXpt);

8 }

9

10 void cQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {

11 ooGoRv[(kIKfgI + QRFOf) & 97603] =

12 ooGoRv[(kIKfgI + CoCiI) | 173937] & ooGoRv[(kIKfgI + aLPxnn) | 39896];

13 }

14

15 uint dLJT (uint RouDUC, uint TSCaTl) {

16 return ooGoRv[763216 ul] | qscwtK (RouDUC + (kIKfgI << 17), TSCaTl);

17 }

bitwise operation loops. The bit combination loop is the

only one to involve bit shifts. In comparison, bitwise

operation loops only perform bitwise operations (i.e.,

binary operations applied in parallel to each bit slot of

64-bit operands). In the end, the program outputs each

ciphertext bit from a different location addr2,i in table

T .

Code 1 Structure of the bitwise program

Input: plaintext bits (b1, b2, · · · , b128), unsigned long integer
table T of length 218 with initial values

Output: ciphertext bits (c1, c2, · · · , c128)

for i = 1 to 128 do
T [addr1,i]← −bi . equivalent to expand bi to unsigned
long integer
for j = 1 to 63 do

T [addr1,i + j ∗ 212 mod 218]← T [addr1,i]
end for

end for

BitwiseOperationLoop1 . see Code 2
BitwiseOperationLoop2

· · ·
BitwiseOperationLoop2573

BitCombination . see Code 3

BitwiseOperationLoop2574

· · ·
BitwiseOperationLoop2582

for i = 1 to 128 do
ci ← T [addr2,i]

end for

Loops before BitCombination. Through basic debug-

ging methods, we observe that the bitwise operation

loops are each composed of 64 iterations performing up

to 504 statements (except the very last loop which has

2051 statements). The basic structure of these loops is

depicted in Code 2 hereafter. A statement simply con-

sists in a bitwise operation (xor, or, and, not) with one

or two operands picked from different locations in the

table T . The result of the bitwise operation is stored at

another location in T . We denote by

{addr1, addr2, · · · , addrN}

the accessing address sequence, namely, the locations

read and written in table T by the statements (in chrono-

logic order) in the first round of loop.

Code 2 Example of a bitwise operation loop

for i = 0 to 63 do
j ← P (i) . P is a permutation of {0, 1, · · · , 63} and
P (0) = 0
T [addr3 + j ∗ 212 mod 218] ← T [addr1 + j ∗ 212

mod 218]⊕T [addr2 + j ∗ 212 mod 218]
T [addr5 + j ∗ 212 mod 218] ← T [addr3 + j ∗ 212

mod 218]∧T [addr4 + j ∗ 212 mod 218]
T [addr8 + j ∗ 212 mod 218] ← T [addr6 + j ∗ 212

mod 218]∨T [addr7 + j ∗ 212 mod 218]
T [addr9+j∗212 mod 218]← ¬T [addr8+j∗212 mod 218]

...
end for

All these addresses are computed from a global vari-

able a which is updated in each loop iteration using a

second global variable b and an update mechanism as

shown in Listing 4 (on Page 7).

Let us denote by a0, a1, . . . , a63, the successive val-

ues taken by the global variable a in the 64 iterations,

so that the ith instruction addri = aj + ci in iteration

6 Louis Goubin et al.

Listing 2: Function definitions after readability processing.

1 uint a, b; // a is used in table lookup, b is used for updating

2 const uint T[] = "..."; // 2^18 uint array

3

4 /* input reading and output writing */

5 void read_plaintext(uint addr, uint pos) { assign(addr, plaintext[pos]); }

6 void write_ciphertext(uint pos, uint addr) { ciphertext[pos] = lookup1(addr); }

7 void expand_bit(uint to, uint from, uint pos) { // expand bit to unsigned long integer

8 T[(a + to) & 0x3ffff] = -((T[(a + from) & 0x3ffff] >> pos) & 1);

9 }

10

11 /* bitwise operations */

12 void not(uint to, uint from) {

13 T[(a + to) & 0x3ffff] = ~T[(a + from) & 0x3ffff];

14 }

15 void or(uint to, uint from1, uint from2){

16 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff] | T[(a + from2) & 0x3ffff];

17 }

18 void xor(uint to, uint from1, uint from2){

19 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff] ^ T[(a + from2) & 0x3ffff];

20 }

21 void and(uint to, uint from1, uint from2){

22 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff] & T[(a + from2) & 0x3ffff];

23 }

24

25 /* bit shifts */

26 void right_shift_xor(uint to, uint from, uint pos) {

27 if (pos > 63) // always false

28 return;

29 T[to & 0x3ffff] ^= T[(a + from) & 0x3ffff] >> pos;

30 }

31 void left_shift_xor(uint to, uint pos, uint from) {

32 uint tmp = (T[(a + from) & 0x3ffff]) & 1;

33 T[(a + to) & 0x3ffff] ^= tmp << pos;

34 }

35

36 /* table look-ups */

37 uint lookup1(uint addr) { return T[(a + addr) & 0x3ffff]; }

38 uint lookup2(uint x, uint y) { return T[(x + y) & 0x3ffff]; }

39 void update_a() { a = lookup2(1592, (b >> 6) + ((b & 63) << 12)); }

40 void update_b() { b = 0x7fff & lookup2(522, (b >> 6) + ((b & 63) << 12)); }

41

42 /* assignments */

43 void assign_a(uint val) { a = val; }

44 void assing_b(uint from) { b = T[from] & 0x07fff; }

45 void assign(uint to, uint val) { T[(a + to) & 0x3ffff] = val; }

46 void copy(uint to, uint addr) { assign(to, lookup1(addr - a)); }

47

48 /* control flow primitives */

49 void goto_func(uint pos) { // ‘‘goto’’ in the virtual machine

50 pc = bop + pos;

51 }

52 void jump_if(uint x, uint y, uint pos) { // conditional jump

53 if (lookup2(2979, (b >> 6) + ((b & 63) << 12)) == lookup2(x, y))

54 goto_f(pos);

55 }

56

57 /* dummy function */

58 void mistery(uint to, uint from) {

59 T[(a + to) & 0x3ffff] = T[(((~T[(a + from) & 0x3ffff]) & 0x7fff) >> 6) + 2979

60 + ((((~T[(a + from) & 0x3ffff]) & 0x7fff) & 63) << 12)];

61 }

How to Reveal the Secrets of an Obscure White-Box Implementation 7

Listing 3: Virtual machine illustration

1 uint T[] = "..."; // 2^18 uint memory, renamed from pDeoW

2 char program[] = "..."; // 15284369 bytes, renamed from JGNNvi

3 void * funcptrs = {"..."};

4

5 void interpretor() {

6 uchar *bop = (uchar *) program;

7 uchar *eop = bop + sizeof (program) / sizeof (uchar);

8 uchar *pc = bop;

9 while (pc < eop) {

10 uchar args_num = *pc++;

11 if (args_num == 0) {

12 void (*func_ptr) ();

13 func_ptr = (void *) funcptrs[*pc++];

14 uint *arg_arr = (uint *) pc;

15 pc += args_num * 8;

16 func_ptr ();

17 } else if (args_num == 1) {

18 void (*func_ptr) (uint);

19 func_ptr = (void *) funcptrs[*pc++];

20 uint *arg_arr = (uint *) pc;

21 pc += args_num * 8;

22 func_ptr (arg_arr[0]);

23 } else if (args_num == 2) {

24 void (*func_ptr) (uint, uint);

25 func_ptr = (void *) funcptrs[*pc++];

26 uint *arg_arr = (uint *) pc;

27 pc += args_num * 8;

28 func_ptr (arg_arr[0], arg_arr[1]);

29 }

30 // similar branches for ags_num = 3, 4, 5, 6

31 }

32 }

33

34 void AES_128_encrypt(uchar * ciphertext, uchar * plaintext) {

35 interpretor();

36 }

Listing 4: Update mechanism of the second global variable.

1 int a, b; // global variables

2

3 assign_b(219964);

4 do{

5 update_a();

6 // bitwise operations

7 // ...

8 // ...

9 update_b();

10 } while(lookup2(2979,(b>>6)+((b&63)<<12))!=lookup2(815257, 237931));

j, where ci is constant and 0 ≤ j ≤ 63. By inspecting

the sequence of aj ’s, we observe that it satisfies

aj = a0 + pj · 212 mod 218,

where pj ∈ {0, 1, . . . , 63} for every j. Moreover, a closer

inspection shows that pj = P (j) for some permutation

P defined over {0, 1, . . . , 63}. We did not try to under-

stand whether there was some underlying mathematical

principle in P (beyond the fact it is a permutation).

At this point, we aim to identify some properties

of these loops that would reveal some structure in the

program. One interesting observation is that for some

loops, there exist 1 ≤ i, j ≤ N and i 6= j such that addri
is a reading address, and addrj is a writing address, and

addri ≡ addrj mod 212 (that is ci ≡ cj mod 212). This

implies that some memory locations are both read and

written during the loop execution. Such loops are said

8 Louis Goubin et al.

to be overlapping ; the other loops are said to be non-

overlapping. There are 1020 overlapping loops and 1562

non-overlapping loops in the program. Besides, there

is no isolated (non)-overlapping loop in the program.

With this observation, the programs is divided into 27

parts, each of which only consists of either overlapping

or non-overlapping loops. In the beginning, we thought

this partition was related to the AES round operations,

but we did not extract any useful information out of this

observation.

Afterwards, by inspecting some arbitrary overlap-

ping loop, we can observe that its inner statements sim-

ply consist in some swaps between memory locations in

the table T . These swaps are implemented through dif-

ferent sequences of bitwise operations. A sample code

is listed in Appendix A.1. Moreover we can further ob-

serve that two swapped addresses are always equivalent

modulo 212. More noteworthy, these swaps seemed use-

less with respect to the functional correctness of the

program. We thus obtain our first simplified program

by removing all overlapping loops (except for the

BitCombintaion discussed in the next paragraph).

We believe the simplified code is functionally equiv-

alent to the original program since their outputs al-

ways match on many randomly chosen inputs. Further-

more, since the remaining loops are non-overlapping

(i.e. all the written memory locations are not used dur-

ing the execution of the current loop), the permuta-

tion P can be replaced with the identity function (i.e.,

P (j) = j, 0 ≤ j ≤ 63). Or even better, we can rewrite

the do ... while loop as a for loop from 0 to 63. We again

verify our conjecture by comparing the program out-

puts before and after modification for a large number

of encryptions (of random plaintexts). Now we acquire

a new simpler version in which the permutations before

BitCombination are all removed.

Code 3 BitCombination (reconstructed for compre-

hension)

for ` = 1 to 129 do

T [addr3,`]← v` . v` ∈ GF(2) is a constant
for j = 1 to 64 do

T [addr3,`] ← T [addr3,`] ⊕ Parity(T [addr4,` + j ∗ 212

mod 218])
T [addr3,`] ← T [addr3,`] ⊕ Parity(T [addr5,` + j ∗ 212

mod 218])
end for

end for

Parity(x) (the number of 1-bits in x modulo 2)

r ← 0
for i = 0 to 63 do

r ← r ⊕ (x� i)&1
end for

return r

BitCombination and the remaining loops. Code 3 il-

lustrates how BitCombination works. It first assigns

129 locations (addr3,`)1≤`≤129 in T with Boolean con-

stants (namely either 0x00...00 or 0x00...01). Then

each of these table locations is further xor-ed with the

parity bits (each of which is computed through 64 sim-

ple instructions) of 128 different values stored in addr4,`+
j ∗212 mod 218 and addr5,`+j ∗212 mod 218, for some

addresses addr4,` and addr5,` and for 1 ≤ j ≤ 64. The

129 64-bit words output from BitCombination are

hence Boolean variables. Moreover, after the remain-

ing loops, all the ciphertext bits are the least signifi-

cant bits of some specific 64-bit words in T . Therefore,

we deduce that only the least significant bits of the

remaining computations after BitCombination take

effects in the outputs, i.e., everything happening after

BitCombination can be seen as a Boolean circuit.

Besides, we observe that only a single iteration in

the last bitwise operation loop affects the output ci-

phertext, which means that we can replace this loop by

a single iteration (for a given value of the loop index

i). Then we can reiterate this observation with the loop

before, and so on until the BitCombination loop. In

the end, the operations after BitCombination is sim-

plified as a Boolean circuit made of one iteration of each

former loop.

Entire Transformation to a Boolean Circuit. Sim-

ilar observations and conjectures can be applied to the

loops before BitCombination. Specifically, observing

that all the operations are bitwise and that any two

bits in different positions of the operands never com-

municate with each other until BitCombination, we

conjecture that

(1) the ith bit of the intermediate values in the jth

loop iteration corresponds to one independent par-

tial AES computation (i.e. not complete without

the operations after BitCombination),

(2) only one (or odd number of) such independent com-

putation(s) in 64*64 of them is (are) real.

To verify this conjecture, we tried to execute BitCom-

bination while skipping one bit index 1 ≤ i ≤ 64 in

the parity computation for one loop index 1 ≤ j ≤
64. For three pairs (i, j), we observed the 129 outputs

of BitCombination were constant to 0 over several

plaintexts. We deduced that real AES computations are

performed in the ith bit slot of the jth iteration for

(i, j) ∈ {(42, 26), (58, 32), (10, 48)} before BitCombi-

nation. Therefore, we can simplify the code by picking

any single separate AES computation and verify our

guess in the usual way. Accordingly, the bitwise pro-

gram is fully transformed into a Boolean circuit.

How to Reveal the Secrets of an Obscure White-Box Implementation 9

2.2 Single Static Assignment Form

Although we get a Boolean circuit, we still lack knowl-

edge about how it works, e.g., where each round is

computed. As in a typical unpacking story, we perform

some static and dynamic analyses to acquire more in-

formation. In the current representation, many interme-

diate variables are both written and read several times,

which presumably hides some facts on the data flow.

In compiler theory, a program in single static assign-

ment (SSA) form means that every variable is assigned

(defined or written) once, but can be read for multi-

ple times after its assignment. (The memory used in

a SSA formatted program is then about its number of

instructions.) The SSA form of a program thus looses

the data dependency by reducing the meaningless in-

terlaced dependences introduced by variable reuse. In

order to transform our Boolean circuit into SSA form,

we rewrite through the few following steps:

1. Declare a global counter c = 0, and an empty

associative map (hashmap) H.

2. For each statement, replace

a) each of its reading address addrr withH(addrr),

b) and its writing address addrw with c,

then we set H(addrw) = c and c = c+ 1.

After this transformation, the program is in SSA form:

every memory location is written exactly once and only

read after its assignment.

2.3 Boolean Circuit Minimization

After SSA transformation, we attempt to minimize the

program in several aspects. Our goal here is to decrease

the computation complexity in the subsequent analysis

techniques that will then target a smaller circuit. We

define a few minimization steps (described below) and

we iterate over these steps several times until we cannot

reduce it any more.

Detection and removal of constants. We execute the

Boolean circuit for a large (e.g., 2048) number of times

with randomly sampled inputs and record the compu-

tation traces (which consist of the ordered sequences of

written values). Then, for each location in these com-

putation traces, we check if the written value is always

the same. Formally, denoting ith computation trace by

(v
(i)
1 , v

(i)
2 , · · · , v(i)t), where t is the size of the trace (i.e.

the number of Boolean instructions), we check whether

v
(1)
j = v

(2)
j = · · · = v

(N)
j = c ∈ {0, 1},

for some index j and for sufficiently large N . If so, we

consider that the jth instruction calculates a constant

and we replace the corresponding variable by the con-

stant c. We then propagate this constant according to

the following Boolean relations:

v ∧ 0 = 0,v ∧ 1 = v,

v ∨ 0 = v,v ∨ 1 = 1, (1)

v ⊕ 0 = v,v ⊕ 1 = ¬v,

where v ∈ {0, 1}. This propagation results in the saving

of further instructions.

In an idealized model where all the variables are uni-

formly distributed, the probability of false judgement

is 2−N . The complexity to perform the detection is of

O(N · t).

Detection and removal of duplicates. We proceed in a

similar way as above to detect and remove duplicates.

Namely, we observe whether for two locations in the

computation traces the written values are always the

same. Formally, we check whether

(v
(1)
j1

= v
(1)
j2

) ∧ (v
(2)
j1

= v
(2)
j2

) ∧ · · · ∧ (v
(N)
j1

= v
(N)
j2

),

for some pair of indexes (j1, j2) and for sufficiently large

N . If so, we consider that the related statements are

duplicated computations and that the j1th and j2th

variables are a pair of duplicates. Then we remove one

of the instance and replace all its apparitions in the

program by the other variable.

As above, the probability of false judgement in a

idealized model is of 2−N . The complexity to perform

the detection is of O(N · t2).

Detection of Boolean inverse. The detection of Boolean

inverse is similar to the detection of duplicates but in-

stead, we check whether

(v
(1)
j1

= ¬v(1)j2) ∧ (v
(2)
j1

= ¬v(2)j2) ∧ · · · ∧ (v
(N)
j1

= ¬v(N)
j2

) ,

for some pair of indexes (j1, j2) and for sufficiently large

N . If so, we can replace the statement computing vj2
by a simple NOT instruction on input vj1 (assuming

j1 < j2), which is likely to induce further simplifications

while looping on the minimization steps.

Detection and removal of pseudorandomness. Here we

look for pseudorandom which are variables used to ran-

domize subsequent intermediate results without affect-

ing the final result. In order to check whether an inter-

mediate variable serves as pseudorandom, we try to flip

its value and check whether the output always matches

the output in a normal execution. Formally, denoting

xi and yi the input and output of the ith execution, we

10 Louis Goubin et al.

flip the jth variable by inserting a statement vj = ¬vj
right after the assignment of vj . Then we check whether

(y1 = y′1) ∧ (y2 = y′2) ∧ · · · ∧ (yN = y′N),

where y′i denotes the output of the execution with the

flipping statement on input xi. If so, we consider vj
to be some pseudorandomness and we replace it by a

constant, e.g., 0. This constant is then propagated as

described above which results in the saving of further

instructions.

The probability of false judgement is not clear but

should quickly become negligible as N grows (as vj
might affect several bits of the output). The complexity

to perform the detection is of O(N · t).

Remark 1 A variable might impact the output result

and be used as pseudorandomness at the same time. In

the above detection, we can only detect the variables

solely for pseudorandomness. Rather to flip an interme-

diate variable, a more effective way is to flip an operand

in a statement. In this sense, the flippable operand cor-

responds to a pseudorandom usage of the variable and

it can be replaced by a constant.

Detection and removal of dead (dummy) code. A dead

statement is an instruction writing a value which is

never used in the subsequent computation. Dead might

be introduced by the above minimization steps or by

the removal of subsequent dead code. The detection and

removal process is a progressive iteration procedure.

Application to Adoring Poitras. We apply these mini-

mization steps to reduce the Boolean circuit recovered

after the reverse engineering of Adoring Poitras. We ap-

ply each step between 2 and 5 times except for the

removal of dummy variables that is applied a dozen

of times. We obtain a minimized circuit of 280K gates

(Boolean instructions), which is half of the original size.

2.4 Data Dependency Analysis

A visual way to analyze data dependency of a circuit

is to plot its data dependency graph (DDG), a directed

acyclic graph (DAG) in which a vertex stands for an in-

termediate variable (an address in T in our case) and a

directed edge means a variable (ending vertex) is com-

puted from another variable (starting vertex). We ex-

tract and plot data dependency graph of our minimized

circuit using Mathematica.4 Specifically, for each state-

ment in the minimized circuit, we first generate one/two

4 See https://www.wolfram.com/mathematica/.

directed edges from the addresses of its operands to the

address of its destination; then we get an ordered se-

quence of edges according to the order in which the rel-

evant gates appear in the circuit. Then we invoke the

Graph function of Mathematica with the sequence of

edges to plot the DDG. At first, we attempt to plot

a figure for the whole DDG, but fail since it is too

costly to produce such a large graph for Mathemat-

ica with a standard computer. Then we try to plot

some smaller part of the circuit DDG, starting with

the first 20% which looks like a mess as shown in Fig-

ure 1. Afterwards, we try plotting the first 10% of the

DDG as shown in Figure 2, but we cannot still extract

too much valuable information except that we observe

some kind of symmetry as illustrated by the red line on

the figure. We keep going and plot the 5% of the DDG

as represented in Figure 3 which reveals much more

structure than our previous observations. A mysteri-

ous “ball” is located in the center of the graph, which

is mainly composed of the first edges (i.e. the begin-

ning of the circuit), and 16 “branches” come out from

this central ball, divided into four groups for which the

four branches eventually join. The plotted circuit starts

from the center and ends with flake structures. Seem-

ingly, the beginning of the circuit has a highly complex

data dependency and the variables inside are deeply

mixed together and then extensively used in the future

computation since our minimization process cannot get

rid of them.

Extracting S-Box Encodings. Based on our knowl-

edge of the AES structure, we make the heuristic as-

sumption that the “branches” correspond to the 16 s-

box computations in the first round of AES which are

then mixed four by four through the MixColumns oper-

ations.

If our assumption is correct, the set of outgoing vari-

ables of a branch (i.e. the set of variables computed

inside the branch and which are used later in the pro-

gram) must be an encoding of the output s-box value. In

order to extract the set of outgoing variables, we apply

modularity-based clustering algorithms [33] to the data

dependency graph. Specifically, we apply the Mathe-

matica function FindGraphCommunities to the first 5%

of the DDG. The graph is then divided into several

communities (clusters) in a way that the vertices in the

same community have a denser connection than a set of

vertices from different communities. This way, we can

isolate each “branch” in Figure 3 and obtain the corre-

sponding set of vertices from which we extract the set

of outgoing variables. Note that in practice, the cluster-

ing algorithm was not necessarily applied the first 5%

of the DDG but a tuning over the search window was

https://www.wolfram.com/mathematica/

How to Reveal the Secrets of an Obscure White-Box Implementation 11

Fig. 1: first 20% edges

Fig. 2: first 10% edges

Fig. 3: first 5% edges

The data dependency graph plotted by Mathematica.

manually applied (see details in Table 3 below). The

number of vertices in the recovered clusters is between

439 and 615 per cluster, and the number of outgoing

variables scales from 29 to 57.

At this step we have 16 sets of variables which are

presumably 16 encodings of the first round s-box out-

puts. We now explain how we could break these encod-

ings and recovered the corresponding secret key bytes.

2.5 Algebraic Analysis

Let us denote by v1, v2, . . . , vt, the t outgoing (binary)

variables of an s-box cluster, that presumably encode

an s-box output. Let us denote by x the plaintext byte

and by k∗ the secret key byte corresponding to this s-

box computation. Then, if our data dependency analy-

sis is correct (namely if the vi’s indeed encode the s-box

output), there exists a deterministic decoding function

dec : {0, 1}t → {0, 1}8 satisfying:

dec : (v1, v2, . . . , vt) 7→
(
Sbox(x⊕ k∗)[0], . . . ,

Sbox(x ⊕ k∗)[7]
)

where Sbox(·)[j] denotes the jth Boolean coordinate

function of the AES s-box.

Our algebraic analysis works by assuming that dec
is linear (actually affine) over GF(2). As we show here-

after, this is enough to break Adoring Poitras but it can

be generalized to higher degree decoding functions (see

Section 3). This linear decoding assumption specifically

states that for each output coordinate j ∈ {0, 1, . . . , 7},
there exists a constant vector a = (a0, a1, a2, · · · , at) ∈
GF(2)t+1 such that

a0 ⊕
t⊕
i=1

ai · vi = Sbox(x⊕ k∗)[j] . (2)

Note that the coefficients ai are different for each out-

put coordinate but we avoid an additional index for the

sake of clarity. In other words, the jth output bit of the

s-box is encoded by a simple Boolean sharing and its

shares are distributed among the vi variables according

to the ai coefficients: if ai = 1 then vi is a share of

Sbox(x ⊕ k∗)[j] and if ai = 0 then Sbox(x ⊕ k∗)[j] is

independent of vi.

To validate our assumption, we collect a set of N

computation traces for the presumed s-box encoding

(v1, v2, . . . , vt). That is, we execute the white-box im-

plementationN times with random plaintexts and record

the values (v
(i)
1 , v

(i)
2 , . . . , v

(i)
t), 1 ≤ i ≤ N , taken by the

encoding variables for these N executions. Then we it-

erate over the 256 possible key guesses k for the 16

possible s-box positions and try to solve the following

system of linear equations (with a0, a1, . . . , at as un-

knowns):
1 v

(1)
1 v

(1)
2 · · · v(1)t

1 v
(2)
1 v

(2)
2 · · · v(2)t

...
...

...
. . .

...

1 v
(N)
1 v

(N)
2 · · · v(N)

t

 ·

a0
a1
a2
...
at

 =


Sbox(x(1) ⊕ k)[j]
Sbox(x(2) ⊕ k)[j]

...
Sbox(x(N) ⊕ k)[j]

 ,
where x(i) denote the values taken by the plaintext byte

x in the ith execution. If our linear decoding assump-

tion is true, then the above system is solvable for the

12 Louis Goubin et al.

right s-box position and the right key guess k = k∗,

which directly follows from Equation (2), and the so-

lution reveals the decoding function dec. On the other

hand, for an incorrect key guess, the chance to solve

the system quickly becomes negligible as the number

of traces N increases above t, which will be formally

discussed in Section 3.3.

Remark 2 Note that the selection of the outgoing vari-

ables v1, v2, . . . , vt (which are basically the fringe edges

of a cluster) is crucial for this attack to work. When

a single one happens to be missing then the system

becomes unsolvable. This stresses the importance of a

sound clustering step for the subsequent success of this

attack.

Practical Results. We perform the above algebraic

analysis based on our linear decoding assumption to

extract the key from our minimized Boolean circuit.

For each presumed s-box cluster, we extract the out-

going variables and record a set of computation traces.

Thanks to the data dependency analysis (and the clus-

tering step) described above, the number t of outgoing

variables is never more than a few dozens (specifically

at most 59). Moreover, we use up to N = 100 compu-

tation traces, which overall yields some linear systems

of dimensions lower than 80×100 solvable within a few

microseconds on a desktop computer.

For each cluster, we try to solve the linear systems

obtained for all the pairs (k, j) (key guess and s-box

coordinate), and all the 16 s-box positions. For most

clusters, all the 8 systems obtained for a single s-box

position and a single key guess are solvable whereas the

others are unsolvable (giving a strong presumption that

we have found the correct key byte). For one cluster, less

than 8 systems are solvable, but still for a single s-box

position and a single key byte. And for a few other clus-

ters, no system is solvable at all. The two latter cases

occur as a consequence of a wrong cluster selection (see

Remark 2). In these cases, we have to fine-tune the

clustering step by varying the range of the input edges

to eventually get some solvable systems (each time for

a single key guess). After recovering 14 out of 16 key

bytes, we exhaust the remaining ones (the 6th and 12th)

by brute-force search5 (over a plaintext-ciphertext pair

computed with the white-box implementation) and fi-

nally recover the full AES key.

Table 3 depicts our practical results in details. For

each of the 16 s-boxes (but the 6th and the 12th for

which we use exhaustive search) it gives the range of

edges in the DDG used for clustering, the number of

5 We could probably extract these bytes through the alge-
braic analysis as well, but it was faster to search exhaustively.

vertices (or variables) in the extracted cluster, the cor-

responding number of outgoing variables (parameter t),

the number of Boolean shares in the encoding of each

s-box output bit (i.e. the Hamming weight of the coef-

ficient vector a), and the recovered key byte. Note that

for the 8th s-box we cannot solve the 8 systems cor-

responding to the right key guess but only 3 of them

(which explains ‘?’ for the number of shares).

For instance, for the third s-box, we can extract a

cluster with 530 variables in the edges ranging between

4000 and 13500 and among which 34 are outgoing vari-

ables. For this cluster we can solve the 8 linear systems.

For further illustration, Table 4 exhibits the solutions

of these 8 systems, where the encoding coefficients are

ordered chronologically. We observe that only 15 con-

secutive variables of the 34 outgoing variables are used

as Boolean shares to encode the 8 output bits of the

s-box. Moreover some of these variables are involved as

shares for more than one output bit of the s-box. In

other words, the decoding function is a 15-bit to 8-bit

linear mapping.

2.6 Summary

Our study reveals that Adoring Poitras mixes several

obfuscation layers to resist the known gray-box attacks

against white-box implementations, and in particular

DCA and DFA.

The innermost obfuscation layer consists of an AES

circuit in which the bits are mixed with pseudorandom-

ness through binary linear applications. As explained in

[8], such a linear encoding provides resistance to stan-

dard DCA under some necessary conditions on the un-

derlying randomness generation, which is why all our

DCA attempts failed to break Adoring Poitras. A higher-

order DCA [8] exploiting multiple samples in a compu-

tation trace could defeat such an encoding scheme, but

it would not be efficient on Adoring Poitras since the

number of shares is relatively high for most of the s-box

output bits and the attack complexity grows exponen-

tially this number. Besides, our efforts on DFA against

Adoring Poitras were ineffective due to some sound fault

resistance mechanism (which we did not fully reverse

engineered).

The middle obfuscation layer involves 4096 AES in-

stances in parallel, three of which are identical and us-

ing the real key whereas the others are based on dummy

keys. On the one hand, the co-existing instances can

be used as redundancy computation for error-detection;

and on the other hand, the number of bit samples in

the computation is greatly increases resulting in a sig-

nificant slow-down for collecting and analyzing the (bi-

nary) computation traces.

How to Reveal the Secrets of an Obscure White-Box Implementation 13

Table 3: Clustering and algebraic analysis results..

s-box edge range #cluster #outgoing vars (t) #shares (HW(a)) key byte

1 9,500 - 18,000 541 30 {8,6,7,5,8,3,3,7} 0x71
2 4,000 - 18,000 543 29 {7,7,6,9,8,7,7,8} 0x3c
3 4,000 - 13,500 530 34 {8,10,8,8,6,2,6,4} 0xcf
4 9,500 - 18,000 515 38 {6,9,8,6,6,11,9,9} 0x9f
5 9,500 - 20,000 571 41 {8,6,6,4,4,9,8,10} 0x27
6 n/a n/a n/a n/a 0x45
7 9,500 - 20,000 615 42 {2,11,5,6,7,10,3,8} 0xe5
8 9,500 - 24,000 500 59 {?,10,11,?,?,14,?,?} 0xbc
9 9,500 - 20,000 448 57 {4,6,7,8,7,6,6,12} 0x04
10 9,500 - 18,000 568 36 {8,6,6,6,6,12,6,8} 0x64
11 4,000 - 18,000 523 35 {9,5,7,9,3,3,8,7} 0xb9
12 n/a n/a n/a n/a 0x07
13 9,500 - 18,000 514 30 {8,5,4,7,5,5,5,6} 0x78
14 9,500 - 20,000 454 45 {14,9,13,12,14,15,10,16} 0xf4
15 9,500 - 18,000 505 30 {8,6,6,8,8,7,4,8} 0x77
16 9,500 - 18,000 439 49 {6,8,8,8,4,6,10,6} 0x07

Table 4: The solution of the system of equations for each bit in the third byte.

bit encoding coefficients

1 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

3 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
5 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0

5 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
7 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
8 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

The outer obfuscation layer comprises many differ-

ent code obfuscation techniques to harden any in-depth

understanding of the implementation.

The composition of different encoding and obfusca-

tion techniques at different levels can make it a very

hard job to break a white-box implementation. In par-

ticular, one should try to protect the implementation

against known generic attacks in order to force the ad-

versary to look for new attack paths. To this regard,

the designers of Adoring Poitras did a good job and we

would particularly retain the idea to introduce many

independent instances in parallel to increase the level

of hiding and serve as a error-detection mechanism at

the same time.

3 Generalization

This section gives a generalization of the attack pre-

sented in the last section. We first depict a general at-

tack methodology against obscure white-box implemen-

tations in Section 3.1. Then we formalize and analyze

the linear decoding analysis that we used for our key

recovery in Section 3.2 and Section 3.3 respectively. We

finally explain in Section 3.4 how this attack can be ex-

tended to break implementations protected with higher

degree encodings.

3.1 A White-Box Attack Methodology

We present hereafter a general attack methodology to

break obscure white-box implementations following the

outline of our cryptanalysis of Adoring Poitras. This

methodology is organized into the five following steps.

Note that depending on the white-box implementation,

it might not be necessary to apply all these steps.

1. Initial reverse engineering. The targeted implemen-

tation is usually protected by several obfuscation

techniques (as e.g. described in [13]). This first step

consists in removing these obfuscation layers, either

manually or by using some automatic tools [42]. The

goal is to understand the role of each part of the

code, and remove any virtualization. Of course, this

step is difficult to fully generalize and automatize.

It should somehow rely on some human handwork

and intuition. The ultimate goal, for the next steps

of our methodology, is to transform the implemen-

tation into an arithmetic circuit (or a Boolean cir-

cuit as particular case). Namely, this first step must

14 Louis Goubin et al.

produce a straight line program (i.e. without con-

ditional branching) in which every instruction is of

the form vi ← vj ∗ v` for some operation ∗ lying

in a defined set of operations. For instance, in the

Boolean case we would have ∗ ∈ {⊕,∧,∨}. But

a white-box implementation could be defined over

a larger finite field (such as GF(2n) or GF(p)), an

integer/polynomial ring, etc. An arithmetic circuit

would then be composed of additions and multi-

plications. But some more complicated operations

could occur and in all generality, which could be

represented, e.g., by look-up tables, taking possibly

more than two input operands.

2. SSA transformation. The arithmetic circuit is then

rewritten into SSA form, in which each variable is

only assigned once and accessed after its assign-

ment. The SSA transformation is depicted in Sec-

tion 2.2.

3. Circuit minimization. Our minimization techniques

described in Section 2.3 are generic and they can be

easily extended to any algebraic structure beyond

the Boolean case. Specifically, we can detect remov-

able intermediate variables, including constants, du-

plicates, pseudorandomness and dummy variables,

by executing the implementation with a large num-

ber of randomly sampled plaintexts (along with flip-

ping variables for detecting pseudorandomness). Then

we can replace the pseudorandomness by 0’s, re-

move duplicates and dummy variables and propa-

gate the constants according to the different opera-

tions. The circuit minimization is an iterative pro-

cess and should be conducted for several rounds.

4. Data dependency analysis. In order to extract the

key from a white-box implementation, it is usual

to focus on some specific early round operations,

e.g., the first round s-boxes in a block cipher. Ob-

serving the DDG is very insightful to locate a given

operation depending on the structure of the target

cryptographic algorithm. This step can be partly au-

tomated through a cluster analysis (though in our

breaking of Adoring Poitras, the visual inspection of

the DDG was necessary to parameterize the clus-

tering). An alternative approach is to try different

windows of intermediate variables which can be fully

automated but this approach is likely to substan-

tially increase the attack complexity compared to an

accurate localization of the target operation. Once

the target operation has been localized (or for each

guessed location), we identify the corresponding set

of outgoing variables which presumably constitutes

an encoding of the target variable.

5. Algebraic analysis. This last step consists in extract-

ing some key information by analyzing the (pre-

sumed) encoding obtained from the data dependency

analysis. To this purpose, we generalize and formal-

ize hereafter the algebraic analysis previously de-

scribed in Section 2.5. But this step could alterna-

tively rely on others attack techniques such as, e.g.,

DCA or DFA [9, 37].

3.2 Linear Decoding Analysis

We formalize the algebraic analysis described in Sec-

tion 2.5 which we shall call linear decoding analysis

(LDA). An LDA attacker against a white-box imple-

mentation can extract the key information contained in

a set of encoded intermediate variables, provided that

the underlying plain variable can be recovered through

a linear decoding.

Without loss of generality, we assume that the white-

box implementation processes intermediate variables (that

can be represented) on some finite field F. Typically

F = GF(2) for a Boolean circuit, but we could have

F = GF(232) for a 32-bit architecture program, or more

generally F = GF(q) for any prime (power) q. Let us

denote s = ϕ(x, k∗) ∈ F the target sensitive variable

where ϕ is a deterministic function, k∗ ∈ K is a subkey

for some subkey space K, and x is a part of the input

plaintext (or output ciphertext).

Similar to a DCA adversary, an LDA adversary con-

trols a white-box implementation and she can execute

it for several plaintexts and dynamically record the cor-

responding computation traces. These traces consist of

ordered t-tuples

v = (v1, v2, · · · , vt)

of the values taken by the intermediate variables (e.g.,

values read/stored in memory, results of CPU instruc-

tions, etc.), where vi ∈ F for every i. As discussed

above, these computation traces might be related to

a small part of the full execution, e.g., when targeting

a specific operation either localized by data dependency

analysis or guessed using an automated search. The

adversary collects N such computation traces v(i) =

(v
(i)
1 , v

(i)
2 , · · · , v(i)t) that correspond toN (chosen) plain-

texts x(i) for 1 ≤ i ≤ N . Then, for every key guess

k ∈ K, she constructs the following system of linear

equations:
1 v

(1)
1 v

(1)
2 · · · v(1)t

1 v
(2)
1 v

(2)
2 · · · v(2)t

...
...

...
. . .

...

1 v
(N)
1 v

(N)
2 · · · v(N)

t

 ·

a0
a1
a2
...
at

 =


ϕ(x(1), k)
ϕ(x(2), k)

...
ϕ(x(N), k)

 , (3)

How to Reveal the Secrets of an Obscure White-Box Implementation 15

where (a0, a1, a2, · · · , at) are the unknown coefficients

in F. If the system is unsolvable for every key guess

k, then the attack fails. If the system is solvable for a

single key guess k, there is a strong presumption that

it is the right key guess i.e. k = k∗, the adversary then

returns k as the (candidate) correct key.

For N sufficiently greater than t, if the above sys-

tem is solvable, it means that the target intermediate

variables satisfy

a0 +

t∑
i=1

ai · vi = ϕ(x, k) . (4)

Namely, the white-box implementation encodes the sen-

sitive variable s in the vi’s through the above (decod-

ing) relation. In particular the variables {vi; ai 6= 0}
form a linear sharing of s. We stress that such encoding

encompasses any kind of Boolean masking or linear se-

cret sharing of any order (see for instance [20, 34, 5]).

Moreover, the encoding function is not necessarily lin-

ear: one would basically generates the masks (or the

shares) pseudorandomly from the full input plaintext

p, implying that the encoding function enc : (p, k∗) 7→
(v1, v2, · · · , vt) could be of high degree in p, whereas the

decoding function dec : (v1, v2, · · · , vt) 7→ s = ϕ(x, k∗)

is linear.

Complexity. LDA has complexity O(|K| · t2.8). For

each key guess k ∈ K, the attack can be split into two

phases: first solve a linear system of t+ 1 equations in

t+1 variables (we assume that the corresponding square

matrix is full rank without loss of generality), and then

check whether the N − (t+ 1) equations match the re-

covered solution. The complexity of the first phase is

O(t2.8) by using the Strassen algorithm [39].6 The sec-

ond phase is then of complexity O(t · (N − t)) which is

negligible compared to the first phase since, as shown

in Section 3.3, a high success probability can be ob-

tained by taking a (small) constant number of addi-

tional traces N − t. We thus obtain a total complexity

of O(|K| · t2.8) for the recovery of one subkey k∗ ∈ K.

Window Search. When the adversary is not able to

accurately localize the target encoding among the in-

termediate variables then he might apply LDA to the

full computational trace (i.e. the computational trace of

the full execution). If we denote by τ the size of this full

trace, then the obtained complexity is of O(|K| · τ2.8),

which might be too huge. For instance this would have

made about 259 operations for a trace of size τ ≈ 280K

6 This could theoretically be reduced to O(t2.376) using the
Coppersmith–Winograd algorithm for very large t (see for
instance [18]) but in practice one shall prefer the Strassen
algorithm.

as obtained for the Adoring Poitras minimized circuit

before data dependency analysis (see Section 2.3).

In practice, one can significantly improve this com-

plexity by searching the potential encoding variables

in a relatively small window of the computation trace.

In a practical white-box implementation, the compu-

tation for some specific (encoded) intermediate result,

has some locality property that the related intermediate

variables are located in a t-size subtrace of the full τ -

size computation trace. Formally, in a full computation

trace (v1, v2, · · · , vτ), t consecutive points

(vi+1, vi+2, · · · , vi+t),

for some index i, contain all variables to decode the

target sensitive variable s. Without knowing the lo-

cality parameter t and the right position i in the full

trace, the adversary can try LDA for several t and i.

Specifically, we suggest to apply LDA on the subtrace

obtained for every i ∈ {1, 2, . . . , τ − t} for an increas-

ing t = 21, 22, 23, . . . The total complexity is then of

O(|K| · τ t2.8), where t is the right locality parameter,

which is better than the full-trace attack complexity

whenever t < τ0.64.

3.3 Analysis of LDA

The soundness of LDA results from the fact that if a de-

coding relation such as Equation (4) does exist for the

target intermediate variable s, and if the shares are well

selected in the computation trace v = (v1, v2, · · · , vt),
then LDA will solve the system for the right key guess

k∗. For a wrong key guess, on the other hand, no solu-

tion should be found unless (1) ϕ is a linear function

w.r.t. the field F, or (2) an encoding ϕ(x, k) is computed

by the implementation for a wrong key guess k× 6= k∗

(with the purpose of fooling the attacker). These two

limitations can simply be mitigated: (1) can be avoided

by targeting an appropriate intermediate result (such as

an s-box output), and it is unlikely that (2) occurs for

all the possible subkeys k ∈ K which would arguably

represent a huge computational overhead for the im-

plementation (and would become intractable as we go

deeper in the computation).

We analyze hereafter the success probability of LDA

under the following assumptions:

– a linear decoding relation (such as Equation (4))

does exist between v and s,

– the plaintext (part) x is uniformly distributed,

– v is uniformly distributed among the t-tuples satis-

fying the decoding relation a0+
∑
i ai ·vi = ϕ(x, k∗),

16 Louis Goubin et al.

The two first assumptions are necessary conditions of

the LDA attack context which are arguably satisfied in

some real white-box design/attack use cases (as typi-

cally considered in this paper). The last assumption is

ideal and is not necessary for LDA to work but only for

the purpose of our formal analysis. It could somehow

be relaxed by considering potential statistical depen-

dences between the variables which would complicate

the analysis without strongly impacting the result.

Proposition 1 Under the above assumptions, the prob-

ability that the LDA linear system Equation (3) is solv-

able for an incorrect key guess k× 6= k∗ is lower than

|q|N−t−1, where

q
def
= max

{
Pr
(
ϕ(X, k∗) = α · ϕ(X, k×)

)
; α ∈ F∗,

(k∗, k×) ∈ K2
}
.

for a uniform distribution of X.

Proof Without loss of generality, we assume that there

exists a subsystem S containing t + 1 equations from

Equation (3) such that the corresponding matrix is full-

rank (implying that S has one and only one solution

whatever the target vector).7 The solution of S is de-

noted a∗ = (a∗0, a
∗
1, · · · , a∗t) for the correct key guess k∗

and a× = (a×0 , a
×
1 , · · · , a

×
t) for the wrong key guess k×.

In the following we will consider that the t+1 equations

in S are the t + 1 first equations of the system. Then,

two possible cases occur:

1. There exists a constant α ∈ F such that a× = α ·a∗.
This implies that

ϕ(x(i), k×) = α · ϕ(x(i), k∗) , (5)

for every 1 ≤ i ≤ t + 1. Moreover, the full sys-

tem has a solution for the guess k× if and only if

Equation (5) is further satisfied for every i ∈ {t +

2, . . . , N}. Since the x(i) are uniformly distributed,

this happens with probability at most qN−(t+1).

2. There does not exist a constant α ∈ F such that

a× = α·a∗. In that case, from our ideal assumption,

we have

a×0 +

N∑
j=1

a×j · v
(i)
j ∼ U(F) ,

(where U(F) denotes the uniform distribution over

F) for every i ∈ {t+2, . . . , N}. Then the full system

has a solution for the guess k× if and only if

a×0 +

N∑
j=1

a×j · v
(i)
j = ϕ(x(i), k×)

7 According to our three assumptions, the probability that
there does not exist any full rank subsystem containing t + 1
equations is negligible.

is satisfied for every i ∈ {t+2, . . . , N}, which occurs

with probability (1
|F|)

N−(t+1) < qN−(t+1).

ut

By Proposition 1, the probability that the system

Equation (3) is solvable for the incorrect key guess k×

is exponentially small in N . In practice, an appropri-

ately chosen ϕ makes q close to 1
|F| and the probability

quickly becomes negligible as N grows over t+1. More-

over, the number of extra traces required to get a given

(negligible) probability of false positive depends on the

target function ϕ, but is constant with respect to t.

As an illustration, if the target variable is a first-

round s-box of AES, then

– for the Boolean case (F = GF(2)) where

ϕ(k, x) = Sbox(k, x)[j]

for some j, we obtain q = 9
16 and taking, e.g., 40

extra equations makes the false-positive probability

lower than 2−32;

– for the full field case (F = GF(256)) where ϕ(k, x) =

Sbox(k, x), we obtain q = 7
256 and taking , e.g., 7

extra equations makes the false-positive probability

lower than 2−32.

3.4 Extension to Higher Degrees

The linear decoding assumption necessary to LDA might

not be satisfied in practice for some white-box imple-

mentations. Depending on the algebraic structure of the

encoding scheme used to protect intermediate variables,

the decoding function might have an algebraic degree

greater than 1. We explain in this section how LDA can
be generalized to break implementations with higher

degree decoding functions. This generalization shall be

called higher-degree decoding analysis (HDDA) in the

following.

For each collected computation trace v, the HDDA

adversary computes the monomial trace defined as:

w = (1) ‖ v ‖ v2 ‖ · · · ‖ vd

where ‖ is the concatenation operator and where vj is

the vector of degree-j monomials:

vj = (vi1 · vi2 · . . . · vij)1≤i1≤i2≤···≤ij≤t .

The size of the vector vj is the number of degree-j

monomials in t variables, which equals
(
j+t−1
j

)
. The

size of the monomial trace is the number of monomials

of degree lower than or equal to d, which is

t′ =

d∑
j=0

(
j + t− 1

j

)
=

(
t+ d

d

)
≤ (t+ d)d

d!
� td .

How to Reveal the Secrets of an Obscure White-Box Implementation 17

From the computation traces obtained for N exe-

cutions (with random input plaintext), the adversary

computes N such monomial traces

w(i) = (w
(i)
1 , w

(i)
2 , · · · , w(i)

t).

Then, for every key guess k ∈ K, she constructs the

linear system:
1 w

(1)
1 w

(1)
2 · · · w(1)

t′

1 w
(2)
1 w

(2)
2 · · · w(2)

t′

...
...

...
. . .

...

1 w
(N)
1 w

(N)
2 · · · w(N)

t′

 ·

a0
a1
a2
...

at′

 =


ϕ(x(1), k)
ϕ(x(2), k)

...
ϕ(x(N), k)

 ,
where (a0, a1, a2, · · · , at′) are the unknown coefficients

in F.

If the above system is solvable for N sufficiently

greater than t′ then (with overwhelming probability)

there exists a degree-d decoding function dec (with the

ai’s as coefficients) such that

dec(v1, v2, . . . , vt) = ϕ(x, k) .

In particular, if the white-box encoding of the sensi-

tive variable s = ϕ(x, k∗) can be decoded with a degree-

d function and if the shares of the encoding are well

included in the computation trace, then the above sys-

tem will be solvable for k = k∗ and the solution will

give the right decoding function.

On the other hand, and as for the LDA case (i.e. the

case d = 1) analyzed above, the probability that the

system is solvable for a wrong key guess k 6= k∗ quickly

becomes negligible as N increases (over t′), provided

that there exists no degree-d relation between ϕ(·, k)

and ϕ(·, k∗) (in particular ϕ is of degree greater than

d).

Complexity. Following the complexity analysis of Sec-

tion 3.2, HDDA has complexityO(|K|·t′2.8). For a small

constant d, this makes a complexity of O(|K|·t2.8d). The

complexity of HDDA with window search in a compu-

tation trace of size τ with an (unknown) locality pa-

rameter of t is then of O(|K| · τ t2.8d).

4 Conclusion

In this paper, we have explained how we could break

the winning challenge (presumably the hardest) in the

recent WhibOx contest. This was done in several steps

mixing reverse engineering, circuit minimization tech-

niques, data dependency analysis and algebraic analy-

sis. In a second part, we have generalized this cryptanal-

ysis into a generic methodology against obscure white-

box implementations and a powerful algebraic attack

against any kind of encodings with a low-degree decod-

ing function. The latter requires to collect some compu-

tation traces as DCA, but it can efficiently break encod-

ings of any order (i.e. whatever the number of shares)

where DCA would not work (and higher-order DCA

would have a very high complexity). Our work makes a

step towards a systematic analysis of obscure white-box

implementations and challenges the approach of using

obscurity to build security in the context of white-box

cryptography.

Our work stresses some design criteria for next gen-

erations of white-box implementations. It shall be re-

quired to thwart all the known generic gray-box attacks

–such as the DCA, fault injection attacks, and LDA

technique introduced in this paper– or at least making

their complexity high enough to render them imprac-

tical. An interesting future research direction would be

to investigate how different protection techniques can

be composed in order to achieve high resistance levels

against these attacks.

References

1. CHES 2017 Capture the Flag Challenge - The WhibOx
Contest, An ECRYPT White-Box Cryptography Com-
petition. https://whibox.cr.yp.to/. Accessed: October
2017.

2. ISO/IEC 8859-1:1998: Information technology – 8-bit
single-byte coded graphic character sets – Part 1:
Latin alphabet No. 1. https://www.iso.org/standard/
28245.html. Accessed: October 2017.

3. WhibOx 2016 - White-Box Cryptography and Obfusca-
tion. https://www.cryptoexperts.com/whibox2016/. Ac-
cessed: October 2017.

4. Barak, B., Goldreich, O., Impagliazzo, R., Rudich,

S., Sahai, A., Vadhan, S. P., and Yang, K. On
the (im)possibility of obfuscating programs. In
CRYPTO 2001 (Aug. 2001), J. Kilian, Ed., vol. 2139 of
LNCS, Springer, Heidelberg, pp. 1–18.

5. Beimel, A. Secret-Sharing Schemes: A Survey. In Cod-

ing and Cryptology - Third International Workshop, IWCC
2011, Qingdao, China, May 30-June 3, 2011. Proceedings

(2011), Y. M. Chee, Z. Guo, S. Ling, F. Shao, Y. Tang,
H. Wang, and C. Xing, Eds., vol. 6639 of Lecture Notes
in Computer Science, Springer, pp. 11–46.

6. Billet, O., Gilbert, H., and Ech-Chatbi, C. Cryptanal-
ysis of a white box AES implementation. In SAC 2004
(Aug. 2004), H. Handschuh and A. Hasan, Eds., vol. 3357
of LNCS, Springer, Heidelberg, pp. 227–240.

7. Biryukov, A., and Udovenko, A. Attacks and
countermeasures for white-box designs. Cryptology
ePrint Archive, Report 2018/049, 2018. https://

eprint.iacr.org/2018/049.
8. Bogdanov, A., Rivain, M., Vejre, P. S., and Wang, J.

Higher-order dca against standard side-channel counter-
measures. Cryptology ePrint Archive, Report 2018/869,
2018. https://eprint.iacr.org/2018/869.

9. Bos, J. W., Hubain, C., Michiels, W., and Teuwen, P.
Differential computation analysis: Hiding your white-box
designs is not enough. In CHES 2016 (Aug. 2016),

https://whibox.cr.yp.to/
https://www.iso.org/standard/28245.html
https://www.iso.org/standard/28245.html
https://www.cryptoexperts.com/whibox2016/
https://eprint.iacr.org/2018/049
https://eprint.iacr.org/2018/049
https://eprint.iacr.org/2018/869

18 Louis Goubin et al.

B. Gierlichs and A. Y. Poschmann, Eds., vol. 9813 of
LNCS, Springer, Heidelberg, pp. 215–236.

10. Bringer, J., Chabanne, H., and Dottax, E. White
box cryptography: Another attempt. Cryptology ePrint
Archive, Report 2006/468, 2006. http://eprint.iacr.org/
2006/468.

11. Chow, S., Eisen, P., Johnson, H., and Van Oorschot,
P. C. A white-box des implementation for drm appli-
cations. In Digital Rights Management Workshop (2002),
vol. 2696, Springer, pp. 1–15.

12. Chow, S., Eisen, P. A., Johnson, H., and van Oorschot,

P. C. White-box cryptography and an AES implementa-
tion. In SAC 2002 (Aug. 2003), K. Nyberg and H. M.
Heys, Eds., vol. 2595 of LNCS, Springer, Heidelberg,
pp. 250–270.

13. Collberg, C., Thomborson, C., and Low, D. A taxon-
omy of obfuscating transformations. Tech. rep., Depart-
ment of Computer Science, The University of Auckland,
New Zealand, 1997.

14. Daemen, J., and Rijmen, V. The design of Rijndael: AES-

the advanced encryption standard. Springer Science &
Business Media, 2013.

15. Delerablée, C., Lepoint, T., Paillier, P., and Rivain,
M. White-box security notions for symmetric encryption
schemes. In SAC 2013 (Aug. 2014), T. Lange, K. Lauter,
and P. Lisonek, Eds., vol. 8282 of LNCS, Springer, Hei-
delberg, pp. 247–264.

16. Garg, S., Gentry, C., and Halevi, S. Candidate multilin-
ear maps from ideal lattices. In EUROCRYPT 2013 (May
2013), T. Johansson and P. Q. Nguyen, Eds., vol. 7881
of LNCS, Springer, Heidelberg, pp. 1–17.

17. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai,
A., and Waters, B. Candidate indistinguishability ob-
fuscation and functional encryption for all circuits. In
54th FOCS (Oct. 2013), IEEE Computer Society Press,
pp. 40–49.

18. Golub, G., and Van Loan, C. Matrix Computations. Johns
Hopkins Studies in the Mathematical Sciences. Johns
Hopkins University Press, 1996.

19. Goubin, L., Masereel, J.-M., and Quisquater, M. Crypt-
analysis of white box DES implementations. In SAC 2007
(Aug. 2007), C. M. Adams, A. Miri, and M. J. Wiener,
Eds., vol. 4876 of LNCS, Springer, Heidelberg, pp. 278–
295.

20. Ishai, Y., Sahai, A., and Wagner, D. Private cir-
cuits: Securing hardware against probing attacks. In
CRYPTO 2003 (Aug. 2003), D. Boneh, Ed., vol. 2729
of LNCS, Springer, Heidelberg, pp. 463–481.

21. Jacob, M., Boneh, D., and Felten, E. Attacking an ob-
fuscated cipher by injecting faults. In Digital Rights Man-
agement Workshop (2002), vol. 2696, Springer, pp. 16–31.

22. Karroumi, M. Protecting white-box AES with dual
ciphers. In ICISC 10 (Dec. 2011), K. H. Rhee and
D. Nyang, Eds., vol. 6829 of LNCS, Springer, Heidelberg,
pp. 278–291.

23. Kocher, P. C., Jaffe, J., and Jun, B. Differential power
analysis. In CRYPTO’99 (Aug. 1999), M. J. Wiener, Ed.,
vol. 1666 of LNCS, Springer, Heidelberg, pp. 388–397.

24. Lepoint, T., and Rivain, M. Another nail in the coffin
of white-box AES implementations. Cryptology ePrint
Archive, Report 2013/455, 2013. http://eprint.iacr.org/
2013/455.

25. Lepoint, T., Rivain, M., Mulder, Y. D., Roelse, P., and
Preneel, B. Two attacks on a white-box AES implemen-
tation. In SAC 2013 (Aug. 2014), T. Lange, K. Lauter,
and P. Lisonek, Eds., vol. 8282 of LNCS, Springer, Hei-
delberg, pp. 265–285.

26. Lin, H. Indistinguishability obfuscation from constant-
degree graded encoding schemes. In EUROCRYPT 2016,

Part I (May 2016), M. Fischlin and J.-S. Coron, Eds.,
vol. 9665 of LNCS, Springer, Heidelberg, pp. 28–57.

27. Lin, H. Indistinguishability obfuscation from SXDH on
5-linear maps and locality-5 PRGs. In CRYPTO 2017,

Part I (Aug. 2017), J. Katz and H. Shacham, Eds.,
vol. 10401 of LNCS, Springer, Heidelberg, pp. 599–629.

28. Lin, H., and Tessaro, S. Indistinguishability obfusca-
tion from trilinear maps and block-wise local PRGs.
In CRYPTO 2017, Part I (Aug. 2017), J. Katz and
H. Shacham, Eds., vol. 10401 of LNCS, Springer, Hei-
delberg, pp. 630–660.

29. Link, H. E., and Neumann, W. D. Clarifying obfusca-
tion: improving the security of white-box des. In Interna-

tional Conference on Information Technology: Coding and

Computing (ITCC’05) - Volume II (April 2005), vol. 1,
pp. 679–684 Vol. 1.

30. Mulder, Y. D., Roelse, P., and Preneel, B. Cryptanal-
ysis of the Xiao-Lai white-box AES implementation. In
SAC 2012 (Aug. 2013), L. R. Knudsen and H. Wu, Eds.,
vol. 7707 of LNCS, Springer, Heidelberg, pp. 34–49.

31. Mulder, Y. D., Roelse, P., and Preneel, B. Revisiting
the BGE attack on a white-box AES implementation.
Cryptology ePrint Archive, Report 2013/450, 2013. http:
//eprint.iacr.org/2013/450.

32. Mulder, Y. D., Wyseur, B., and Preneel, B. Crypt-
analysis of a perturbated white-box AES implementa-
tion. In INDOCRYPT 2010 (Dec. 2010), G. Gong and
K. C. Gupta, Eds., vol. 6498 of LNCS, Springer, Heidel-
berg, pp. 292–310.

33. Newman, M. E. J. Fast algorithm for detecting commu-
nity structure in networks. Phys. Rev. E 69 (Jun 2004),
066133.

34. Rivain, M., and Prouff, E. Provably secure higher-order
masking of AES. In CHES 2010 (Aug. 2010), S. Mangard
and F.-X. Standaert, Eds., vol. 6225 of LNCS, Springer,
Heidelberg, pp. 413–427.

35. Rolles, R. Unpacking virtualization obfuscators. In Pro-

ceedings of the 3rd USENIX Conference on Offensive Tech-
nologies (Berkeley, CA, USA, 2009), WOOT’09, USENIX
Association, pp. 1–1.

36. Sahai, A., and Waters, B. How to use indistinguishabil-
ity obfuscation: deniable encryption, and more. In 46th

ACM STOC (May / June 2014), D. B. Shmoys, Ed., ACM
Press, pp. 475–484.

37. Sanfelix, E., Mune, C., and Haas, J. d. Unboxing the
White-Box - Practical attacks against Obfuscated Ci-
phers . https://www.blackhat.com/docs/eu-15/materials/
eu-15-Sanfelix-Unboxing-The-White-Box-Practical-

Attacks-Against-Obfuscated-Ciphers-wp.pdf, 2015.
Accessed: October 2017.

38. Saxena, A., Wyseur, B., and Preneel, B. Towards se-
curity notions for white-box cryptography. In ISC 2009
(Sept. 2009), P. Samarati, M. Yung, F. Martinelli, and
C. A. Ardagna, Eds., vol. 5735 of LNCS, Springer, Hei-
delberg, pp. 49–58.

39. Strassen, V. Gaussian elimination is not optimal. Numer.
Math. 13, 4 (Aug. 1969), 354–356.

40. Wyseur, B., Michiels, W., Gorissen, P., and Preneel,
B. Cryptanalysis of white-box DES implementations with
arbitrary external encodings. In SAC 2007 (Aug. 2007),
C. M. Adams, A. Miri, and M. J. Wiener, Eds., vol. 4876
of LNCS, Springer, Heidelberg, pp. 264–277.

41. Xiao, Y., and Lai, X. A secure implementation of white-
box aes. In Computer Science and its Applications, 2009.

http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2006/468
http://eprint.iacr.org/2013/455
http://eprint.iacr.org/2013/455
http://eprint.iacr.org/2013/450
http://eprint.iacr.org/2013/450
https://www.blackhat.com/docs/eu-15/materials/eu-15-Sanfelix-Unboxing-The-White-Box-Practical-Attacks-Against-Obfuscated-Ciphers-wp.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Sanfelix-Unboxing-The-White-Box-Practical-Attacks-Against-Obfuscated-Ciphers-wp.pdf
https://www.blackhat.com/docs/eu-15/materials/eu-15-Sanfelix-Unboxing-The-White-Box-Practical-Attacks-Against-Obfuscated-Ciphers-wp.pdf

How to Reveal the Secrets of an Obscure White-Box Implementation 19

CSA’09. 2nd International Conference on (2009), IEEE,
pp. 1–6.

42. Yadegari, B., Johannesmeyer, B., Whitely, B., and De-

bray, S. A generic approach to automatic deobfuscation
of executable code. In 2015 IEEE Symposium on Security

and Privacy (May 2015), IEEE Computer Society Press,
pp. 674–691.

A Code Listings

A.1 Swapping in Overlapping Loops

Here is a code segment to show swapping implementation in
two different ways by using bitwise operations. The operands
indicates the address in table T . The first operand is for the
result, while the remaining ones are for the inputs.

Listing 5: Swapping in overlapping loops

1 // swapping values in T[248329] and T[178697]

2 // where 248329 = 178697 mod 2^12

3 not(225586, 248329);

4 not(99382, 178697);

5 not(125856, 99382);

6 xor(13816, 225586, 99382);

7 xor(33114, 99382, 225586);

8 not(20933, 13816);

9 not(188758, 225586);

10 not(180239, 33114);

11 or(261865, 180239, 133397);

12 or(94096, 20933, 133397);

13 xor(201945, 261865, 125856);

14 xor(3792, 94096, 188758);

15 not(248329, 3792);

16 not(178697, 201945);

17

18 // swapping values in T[92413] and T[22781]

19 // where 92413 = 22781 mod 2^12

20 not(24583, 92413);

21 not(146257, 22781);

22 xor(67653, 146257, 133397);

23 xor(234702, 24583, 133397);

24 or(181444, 24583, 133397);

25 and(172013, 234702, 24583);

26 or(110852, 172013, 146257);

27 and(248606, 110852, 181444);

28 or(79222, 146257, 133397);

29 and(146881, 67653, 146257);

30 or(86050, 146881, 24583);

31 and(44767, 86050, 79222);

32 not(92413, 44767);

33 not(22781, 248606);

	Introduction
	Breaking Adoring Poitras
	Generalization
	Conclusion
	Code Listings

