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Abstract

In a series of papers Mauduit and Sárközy (partly with coauthors) studied finite pseudorandom
binary sequences. They showed that the Legendre symbol forms a “good” pseudorandom sequence,
and they also tested other sequences for pseudorandomness, however, no large family of “good”
pseudorandom sequences has been found yet.

In this paper, a large family of this type is constructed by extending the earlier Legendre symbol
construction.

1991 Mathematics Subject Classification : 11 K 45.
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1 Introduction

In a series of papers Mauduit and Sárközy (partly with further coauthors) studied finite pseudorandom
binary sequences

EN = {e1, e2, . . . , eN} ∈ {−1,+1}N .

In particular, in Part I [5] first they introduced the following measures of pseudorandomness :
Write

U(EN , t, a, b) =
t−1∑
j=0

ea+jb

and, for D = (d1, . . . , dk) with non-negative integers d1 < . . . < dk,

V (EN ,M,D) =
M∑

n=1

en+d1en+d2 . . . en+dk
.

Then the well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

|U(EN , t, a, b)| = max
a,b,t

|
t−1∑
j=0

ea+jb|

where the maximum is taken over all a, b, t such that a, b, t ∈ IN and 1 ≤ a ≤ a+ (t− 1)b ≤ N , while
the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

|V (EN ,M,D)| = max
M,D

|
M∑

n=1

en+d1en+d2 . . . en+dk
|

where the maximum is taken over all D = (d1, . . . , dk) and M such that M + dk ≤ N .
Then the sequence EN is considered as a “good” pseudorandom sequence if both these measures

W (EN ) and Ck(EN ) (at least for small k) are “small” in terms of N (in particular, both are o(N) as
N →∞).

Moreover, it was shown in [5] that the Legendre symbol forms a “good” pseudorandom sequence.
More exactly, let p be an odd prime, and

N = p− 1, en =
(
n

p

)
, EN = {e1, . . . , eN}. (1)
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Then by Theorem 1 in [5] we have

W (EN ) � p1/2 log p� N1/2 logN

and
Ck(EN ) � kp1/2 log p� kN1/2 logN.

Since then numerous binary sequences have been tested for pseudorandomness but still construc-
tion (1) is the best (see also [9] for another construction which is just slightly worse). However, all
the constructions given so far for “good” pseudorandom binary sequences produce only a “few” good
sequences while in certain applications (e.g., in cryptography) one needs “large” families of “good”
pseudorandom binary sequences.

In this paper our goal is to construct large families of this type. We remark that our results could
be extended to the more general case of sequences of r symbols (see [7]), however, we prefer to focus
here on the slightly simpler case r = 2.

2 A further construction related to the Legendre symbol

The pseudorandom properties of the Legendre symbol
(

n
p

)
have been studied in numerous papers,

see e.g. [8] and [4]. Further references can be found in [5]. Here we consider the more general case(
f(n)

p

)
.

In [6] we extended construction (1) by generalizing the definition of en to

en =
(
f(n)
p

)
where f(n) is a permutation polynomial over Fp (= the field of the modulo p residue classes).

However, very little is known on permutation polynomials and we know only very few of them.
Now we shall be able to use a much greater family of “good” polynomials. Before describing the

family of these polynomials, we have to introduce two definitions.

DEFINITION 1. If M ∈ IN , A,B ⊂ ZZ (= ring of the modulo m residue classes), and A + B
represents every element of ZZm with even multiplicity, i.e., for all c ∈ ZZm,

a+ b = c, a ∈ A, b ∈ B (2)

has even number of solutions (including the case when there are no solutions), then the sum A+B is
said to have property P .

DEFINITION 2. If k, `,m,∈ IN and k, ` ≤ m, then (k, `,m) is said to be an admissible triple if
there are no A,B ⊂ ZZm such that |A| = k, |B| = `, and A+ B possesses property P .

Let us denote by Fp the algebraic closure of Fp.

THEOREM 1. If p is a prime number, f(X) ∈ Fp[X] (Fp being the field of the modulo p residue
classes) has degree k(> 0), f(X) has no multiple zero in Fp, and the binary squence Ep = {e1, . . . , ep}
is defined by

en =


(
f(n)
p

)
for (f(n), p) = 1

+1 for p|f(n),
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then
(i) we have

W (Ep) < 10 kp1/2 log p; (3)

(ii) if ` ∈ IN is such that the triple (r, `, p) is admissible for all r ≤ k, then

C`(Ep) < 10 k`p1/2 log p. (4)

PROOF OF THEOREM 1. The proof of both assertions (i) and (ii) will be based on

LEMMA 1. Suppose that p is a prime number, χ is a non-principal character modulo p of order d
(so that d|p− 1), f(X) ∈ Fp[X] has degree k and a factorization f(X) = b(X −X1)d1 . . . (X −Xs)ds

(where Xi 6= Xj for i 6= j) in Fp with

(d, d1, . . . , ds) = 1. (5)

Let X,Y be real numbers with 0 < Y ≤ p.
Then ∣∣∣∣∣∣

∑
X<n≤X+Y

χ(f(n))

∣∣∣∣∣∣ < 9 kp1/2 log p.

PROOF OF LEMMA 1. This is Theorem 2 in [5] and, indeed, there we derived it from A. Weil’s
theorem [11]. We remark that a small correction is needed in our proof there : in the proof we used
formula (4.1) which said that under certain assumptions on p, χ, d, and f(X), for all a ∈ ZZ we have∣∣∣∣∣∣

∑
X∈Fp

χ(f(X)) exp
(

2iπaX
p

)∣∣∣∣∣∣ ≤ sp1/2.

We wrote that “this is a part of Theorem 2G in [11, p.45]”. This reference is correct for (a, p) = 1,
but for p|a it must be replaced by a reference to Theorem 2C or 2C’ in [11, p.43].

Moreover, we remark that in Theorem 2 in [5] our goal was to state the inequality in question in a
possibly simple form which holds uniformly in p. For large p the constant factor in the upper bound
can be improved considerably and, indeed, the same proof also gives that for p → ∞ the constant
factor 9 in Theorem 2 in [5] and in Lemma 1 above can be replaced by a factor 1 + o(1). Using this
form of the lemma, we obtain that for p → ∞ the constant factor 10 in both (3) and (4) above can
be replaced by a factor 1 + o(1). (However, one would expect that the truth is o(kp1/2 log p), resp.
o(k`p1/2 log p); perhaps even O(kp1/2 log log p), resp. O(k`p1/2 log log p) is also true, but certainly not
more.)

(i) Assume that a ∈ ZZ, b, t ∈ IN and

1 ≤ a ≤ a+ (t− 1)b ≤ p, (6)

and write g(X) = f(a+ bX) so that g(X) ∈ Fp[X].
Clearly, g(X) ≡ 0 (mod p) has at most k solutions thus, defining

(
a
p

)
as 0 for p|a, we have

|u(Ep, t, a, b)| =

∣∣∣∣∣∣
t−1∑
j=0

ea+jb

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
t−1∑
j=0

(
f(a+ jb)

p

)∣∣∣∣∣∣+ k =

∣∣∣∣∣∣
t−1∑
j=0

(
g(j)
p

)∣∣∣∣∣∣+ k. (7)

Clearly, f and g are of the same degree, and if the factorization of f in Fp is

f(X) = c(X −X1) . . . (X −Xk)
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where Xi 6= Xj for i 6= j, then the factorization of g(X) is

g(X) = f(a+ bX) = cbk(X − b−1(X1 − a)) . . . (X − b−1(Xk − a))

so that g(X) does not have multiple zeros either. Thus in order to estimate the sum in (7), we may

apply Lemma 1 with
(
n

p

)
, 2 and g(n) in place of χ(n), d and f(n), respectively. We obtain that

|u(Ep, t, a, b)| =

∣∣∣∣∣∣
t−1∑
j=0

(
g(j)
p

)∣∣∣∣∣∣+ k < 9kp1/2 log p+ k < 10 kp1/2 log p

for all a, b, t satisfying (6) which completes the proof of (3).

(ii) Write f(X) = bf1(X) with b ∈ ZZp where f1(X) is a unitary polynomial. For any integers
d1, . . . , d` and M ∈ IN with

0 ≤ d1 < . . . < d`,M + d` ≤ p, (8)

f(n+ di) ≡ 0( mod p), 1 ≤ n ≤M, 1 ≤ i ≤ `

has at most k` solutions. Thus writing again
(

0
p

)
= 0, we have

V (Ep,M,D) =

∣∣∣∣∣
M∑

n=1

en+d1en+d2 . . . en+d`

∣∣∣∣∣ ≤
∣∣∣∣∣

M∑
n=1

(
f(n+ d1)

p

)(
f(n+ d2)

p

)
. . .

(
f(n+ d`)

p

)∣∣∣∣∣+ k` =

=

∣∣∣∣∣
(
b`

p

)
M∑

n=1

(
f1(n+ d1)f1(n+ d2) . . . f1(n+ d`)

p

)∣∣∣∣∣+ k`.

Write h(n) = f1(n+ d1)f1(n+ d2) . . . f1(n+ d`). It suffices to show :

LEMMA 2. If f, k, ` are defined as in Theorem 1, then h(X) has at least one zero in Fp whose
multiplicity is odd.

Indeed, assuming that Lemma 2 has been proved, the proof of (4) can be completed in the following
way : by Lemma 2, we may apply Lemma 1 with

(
n
p

)
, 2 and h(X) in place of χ, d and f(X),

respectively (since then (5) holds with d = 2). The degree of h(X) is clearly k`, thus applying Lemma
1 we obtain

|V (Ep, t, a, b)| ≤
∣∣∣∣∣

M∑
n=1

(
h(n)
p

)∣∣∣∣∣+ k` < 9k`p1/2 log p+ k` < 10 k`p1/2 log p

for all d1, . . . , d`,M satisfying (8) which proves (4). Thus it remains to prove the lemma :

PROOF OF LEMMA 2. We will say that the polynomials ϕ(X) ∈ Fp[X], ψ(X) ∈ Fp[X] are
equivalent : ϕ ∼ ψ if there is an a ∈ Fp such that ψ(X) = ϕ(X + a). Clearly, this is an equivalence
relation.

Write f1(X) as the product of irreducible polynomials over Fp. It follows from our assumption on
f(X) that these irreducible factors are distinct. Let us group these factors so that in each group the
equivalent irreducible factors are collected. Consider a typical group ϕ(X + a1), . . . , ϕ(X + ar).

Then writing h(X) as the product of unitary irreducible polynomials over Fp, all the polynomials
ϕ(X + ai + dj) with 1 ≤ i ≤ r, 1 ≤ j ≤ ` occur amongst the factors. All these polynomials are
equivalent, and no other irreducible factor belonging to this equivalence class will occur amongst the
irreducible factors of h(X).
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Since distinct unitary irreducible polynomials cannot have a common zero, thus the conclusion of
Lemma 2 fails, i.e., each of the zeros of h is of even multiplicity, if and only if in each group, formed by
equivalent irreducible factors ϕ(X + ai + dj) of h(X), every polynomial of form ϕ(X + c) occurs with
even multiplicity, i.e., for even number of pairs ai, dj . In other words, writing A = {a1, . . . , ar},D =
{d1, . . . , d`}, for each group A + D must possess property P . Now consider any of these groups (by
deg f > 0 there is at least one such group).

Since A+D possesses property P , thus (r, `, p) (with r = |A|) is not an admissible triple. Clearly
here we have r ≤ deg f1 = deg f = k which contradicts our assumption on ` and thus, indeed, the
conclusion of Lemma 2 cannot fail, and this completes the proof.

3 Sufficient criteria for admissibility.

To be able to use Theorem 1, one needs criteria for a triple (k, `, p) being admissible.
Here we will present and prove three sufficient criteria of this type :

THEOREM 2.
(i) For every prime p and k ∈ IN, k < p the triple (k, 2, p) is admissible.

(ii) If p is prime, k, ` ∈ IN and

(4`)k < p, (9)

then (k; `, p) is admissible.

(iii) If p is a prime such that 2 is a primitive root modulo p, then for every pair k, ` ∈ IN with
k < p, ` < p, the triple (k, `, p) is admissible.

PROOF.
(i) Assume that contrary to the assertion, there is a prime p and a k ∈ IN with

k < p (10)

such that the triple (k, 2, p) is not admissible, i.e., there are A,B ⊂ ZZp such that |A| = k, |B| = 2 and
(2) has even number of solutions for all c ∈ ZZp. Write B = {b, b+ d} (where d 6= 0).

Every element of A+ b must have (at least) 2 representations in form (2) whence it follows easily
that A+b = A+b+d. Therefore, A+b = A+b+rd for any r, thus A+b = A+b+s for any s ∈ ZZp,
in particular for any s ∈ A+ b. Hence, A+ b is an additive subgroup of ZZp thus A = A+ b = ZZp.

(ii) Assume that k, `, p satisfy (9), and we have A,B ⊂ ZZp, |A| = k, |B| = `.
It suffices to show that then there is a c ∈ ZZp for which (2) has exactly one solution. Moreover,

if m ∈ IN, (m, p) = 1, then (2) and

ma+mb = mc, a ∈ A, b ∈ B

have the same solutions, and if c runs over the elements of ZZp, then here c′ = mc does the same.
Thus it suffices to show that there are m ∈ IN, c′ ∈ ZZp such that (m, p) = 1, and

ma+mb = c′, a ∈ A, b ∈ B (11)

has exactly one solution.

6



For a ∈ ZZ, let r(a) denote the absolute least residue of a modulo p, i.e., definie r(a) ∈ ZZ by

r(a) ≡ a(mod p), |r(a)| ≤ p− 1
2

.

We need

LEMMA 3. If k, `, p,A are defined as above, and the residue classes in A are represented by
a1, . . . , ak, then there is an m ∈ IN such that (m, p) = 1 and

|r(mai)| ≤
1
2

[
p

`

]
for i = 1, 2, . . . , k. (12)

PROOF OF LEMMA 3. Consider the p k tuples

uj = (r(ja1), . . . , r(jak)), j = 1, 2, . . . , p (13)

Write D =
1
2

[
p

`

]
+1 and Z =

[
p

D

]
+1. Then DZ > p, thus for each of the k triples in (13), there

are uniquely determined non-negative integers t1 = t1(j), . . . , tk = tk(j) such that

r(jai) ∈
{
−p− 1

2
+ tiD,−

p− 1
2

+ tiD + 1, . . . ,−p− 1
2

+ (ti + 1)D − 1
}

for i = 1, 2, . . . , k,

and for these integers ti clearly we have

ti ∈ {0, 1, . . . , Z − 1} for i = 1, 2, . . . , k. (14)

The number of the possible k tuples t1, . . . , tk with (14) is, by (9),

Zk =
([

p

D

]
+ 1

)k

<

(
2
p

D

)k

<

(
2

p

p/2`

)k

= (4`)k < p,

thus there is at least one k tuple t1, . . . , tk which is assigned to at least two distinct j values j1, j2 :

t1 = t1(j1) = t1(j2), . . . , tk = tk(j1) = tk(j2). (15)

Then we have
−p− 1

2
+ tiD ≤ r(j1ai), r(j2ai) < −p− 1

2
+ (ti + 1)D

whence
|r(j1ai)− r(j2ai)| < D for i = 1, 2, . . . , k. (16)

Now define m by m = |j1 − j2| so that, by 1 ≤ j1, j2 ≤ p and j1 6= j2, we have (m, p) = 1.
Then it follows from (16) that

|r(mai)| = |r((j1 − j2)ai)| ≤ |r(j1ai)− r(j2ai)| < D for i = 1, 2, . . . , k

which completes the proof of Lemma 3.
In order to complete the proof of assertion (ii), consider an integer m satisfying (m, p) = 1 and

(12) in Lemma 3, and denote the representatives of the residue classes in B by b1, . . . , b`. Now we
represent the elements of ZZp on a circle, more exactly, assign the consecutive vertices Q(1), . . . , Q(p)
of a regular p-gon to the consedutive residue classes 1, 2, . . . , p.

Consider the vertices Q(mb1), . . . , Q(mb`) and consider a pair Q(mbi), Q(mbj) of vertices such
that, moving on the circle in positive direction, there is no further vertex Q(mbX) between them,
moreover, this is the pair of consecutive vertices with the maximal distance between them. We may
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assume that moving in the positive direction Q(mbi) comes first, followed by Q(mbj) (with no Q(mbx)
between). In other words,

mbx 6∈ {mbi + 1,mbi + 2, . . . ,mbj − 1} for x = 1, 2, . . . , `

(in ZZp sense, i.e., modulo p). A straightforward application of the pigeon hole principle gives that the
maximal modulo p distance between two consecutive mb′xs, i.e., the distance between mbi and mbj is
at least [p/`] + 1 (note that p/` is not integer).

Consider the numbers r(ma1), . . . , r(mak), and reorder them according to their size, denote the
numbers obtained in this way by r1, . . . , rk so that, by (12),

−1
2

[
p

`

]
≤ r1 < . . . < rk ≤

1
2

[
p

`

]
.

By (12) we have

(mbj + r1)− (mbi + rk) = (mbj −mbi) + r1 − rk ≥
([
p

`

]
+ 1

)
− 1

2

[
p

`

]
− 1

2

[
p

`

]
= 1 > 0. (17)

If u, v are defined by r(mau) = r1 and r(mav) = rk, then it follows easily from (12) and (17) that
the numbers

mbi + rk = mbi +mav

and
mbj + r1 = mbj +mau

do not have any further representations in form (11) which completes the proof.
(iii) From practical point of view this is, perhaps, the most important of the three criteria. Namely,

this criterion enables us to control even correlations of very high order provided that there are “many”
primes p such that 2 is a primitive root modulo p.

Unfortunately, it is not known yet that there are infinitely many primes with this property: this is
Artin’s conjecture for primitive roots [1]. However, it is conjectured [2] that a positive proportion of
the primes is of this type. Partly because of the importance of this criterion, partly in order to help
to understand the notion of admissibility and the related difficulties better, we will give a detailed
discussion of this case in the next section. This discussion will lead not only to the proof of criterion
(iii), but it will also provide negative examples.

4 Admissibility, “good” primes. Negative examples.

DEFINITION 3. A positive integer m is said to be good if for any pair k, ` ∈ IN with k < m, ` < m,
the triple (k, `,m) is admissible.

THEOREM 3. An odd prime p is good if and only if 2 is a primitive root modulo p.

PROOF OF THEOREM 3. For any C ⊂ ZZp let us consider the polynomial PC(X) ∈ F2[X]
defined by PC(X) =

∑
c∈C

Xs(c) where s(c) denotes the least non negative element of the residue class

c modulo p.

We remark that for any u ∈ ZZp, the polynomial Pu+C(X) is equal to the residue of Xu.PC(X)
modulo (1 +Xp) in F2[X].

It follows from this remark that for any A,B ⊂ ZZp, the sum A+ B has property P if and only if
(1 +Xp) divides PA(X)PB(X) in F2[X].
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If 1 +X + . . .+Xp−1 is reducible in F2[X], let us write 1 +X + . . .+Xp−1 = P1(X)P2(X) with
2 ≤ degPi ≤ p− 3 for i ∈ {1, 2} (polynomials of degree 1 do not divide 1 +X + . . .+Xp−1 in F2[X]).

If we define A and B by P1(X) =
∑
a∈A

Xs(a) and (1 +X)P2(X) =
∑
b∈B

Xs(b), we see that the sum

A+ B has property P , so that p is not a good prime.
Conversely if 1 +X + . . .+Xp−1 is irreducible in F2[X], for any A,B ⊂ ZZp such that A+ B has

property P , the polynomial 1+X + . . .+Xp−1 must divide PA(X) or PB(X) in F2[X], which implies
A = ZZp or B = ZZp, so that p is a good prime.

Thus we have proved that a prime p is good if and only if the polynomial 1 +X + . . . +Xp−1 is
irreducible in F2[X].

It follows from a well known result concerning cyclotomic polynomials (see for example [6, Theorem

2.47, page 65]) that the polynomial 1+X+. . .+Xp−1 factors into
p− 1
d

distinct irreducible polynomials

of the same degree d in F2[X], where d is the least positive integer such that 2d ≡ 1modp. In particular,
this shows that the polynomial 1+X+ . . .+Xp−1 is irreducible in F2[X] if and only if 2 is a primitive
root modulo p, which completes the proof of theorem 3.

REMARK. The same method shows that an integer m is good if only if m = 4, pk or 2pk, where p
is an odd prime, k ≥ 0 and 2 is a primitive root modulo m (see [6, page 7]).

If p is not a good prime, then this method provides many examples of A,B ⊂ ZZp such that A+B
has property P , i.e., of pairs k, ` ∈ IN such that (k, `, p) is not admissible.

EXAMPLE 1. If p = 7, then the factorization of 1+X7 in F2[X] as (1+X+X3)(1+X+X2 +X4)
shows that if A = {0, 1, 3} and B = {0, 1, 2, 4}, then A + B has property P. It follows that (3,4,7)
and (4,3,7) are not admissible.

For p = 7, it is actually easy to find all A,B ⊂ ZZ7 such that A+B has property P. The problem is
equivalent to find all polynomials PA and PB of degree less than 7 in F2[X] such that PA(X)PB(X) is
a multiple of the product of the three irreducible polynomials (1+X), (1+X+X3) and (1+X2 +X3)
in F2[X].

For example, the factorization of (1 +X +X2 +X3)(1 +X7) in F2[X] as (1 +X3 +X5 +X6)(1 +
X+X2 +X4) shows that if A = {0, 3, 5, 6} and B = {0, 1, 2, 4}, then A+B has property P. Moreover
a little computation shows that (3,4,7), (4,3,7) and (4,4,7) are the only non-admissible triple for p = 7.

EXAMPLE 2. If p = 17, then the factorization of 1 +X17 in F2[X] as (1 +X +X3 +X6 +X8 +
X9)(1 +X +X2 +X4 +X6 +X7 +X8) shows that if A = {0, 1, 3, 6, 8, 9} and B = {0, 1, 2, 4, 6, 7, 8},
then A+ B has property P.

In the same way, the factorization of 1+X17 in F2[X] as (1+X3 +X4 +X5 +X8)(1+X3 +X4 +
X5 +X6 +X9) shows that if A = {0, 3, 4, 5, 8} and B = {0, 3, 4, 5, 6, 9), then A+ B has property P.
It follows that (6,7,17), (7,6,17),(5,6,17) and (6,5,17) are not admissible.

EXAMPLE 3. If p = 31, then the factorization of 1 + X31 in F2[X] as (1 + X2 + X5)(1 + X2 +
X4 +X5 +X6 +X8 +X9 +X13 +X14 +X15 +X16 +X17 +X20 +X21 +X23 +X26) shows that if
A = {0, 2, 5} and B = {0, 2, 4, 5, 6, 8, 9, 13, 14, 15, 16, 17, 20, 21, 23, 26} then A+ B has property P . It
follows that (3,16,31) and (16,3,31) are not admissible.

9



5 Consequences, the algorithm.

Combining Theorem 1 and (i) in Theorem 2 we obtain.

COROLLARY 1. If p, f, k, Ep are defined as in Theorem 1, then we have

W (Ep) < 10kp1/2 log p (18)

and
C2(Ep) < 20kp1/2 log p.

In other words, the well-distribution measure and the correlation of order 2 are always small. If
we also want to control correlations of higher order, this is possible if the order is not “very large” in
terms of k and p. Indeed, combining Theorem 1 and (ii) in Theorem 2 we obtain.

COROLLARY 2. If p, f, k, Ep are defined as in Theorem 1, and either
(i) 2 is a primitive root modulo p and ` < p, or
(ii) we have

` <
p1/4

4
,

then both (18) and
C`(Ep) < 10k`1/2

p log p (19)

hold.

Based on Corollary 2, we propose the following algorithm for constructing pseudorandom binary
sequences of a given length p (where p is prime) :

THE ALGORITHM. Suppose a prime p and an integer L ∈ IN are given with

L <

{
p for all p
p

4
if 2 is not primitive root modulo p (20)

(and typically L is “much smaller”, than p/4, say, L < p1/4). Suppose we want to control the
correlation of order ` for all ` ≤ L.

Let L ∈ IN be a “large” number but such that

k <
log p

log(4L)
if 2 is not a primitive root modulo p. (21)

Write t = [k/2]. Then consider polynomials g(X) ∈ Fp[X] of the form

g(X) = Xk +
t∑

i=0

aiX
i (22)

where any coefficients ai can be chosen with

ai ∈ ZZp for i = 0, 1, . . . , t− 1 and at ∈ ZZp\0. (23)

Let d(X) denote the greatest common divisor of the polynomials g(X) and g′(X), and compute

f(X) =
g(X)
d(X)

=
g(X)

(g(X), g′(X))
. (24)
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Then computing the sequence Ep defined as in Theorem 1, we obtain a “good” pseudorandom
sequence Ep.

Indeed, it follows from (24) that f(X) has no multiple zeros. The degree of f(X) is

deg f(X) ≤ deg g(X) = k.

Moreover, by (20) and (21), for all ` ≤ L we have

` ≤ L <

 p for all p
1
4
p1/4 if 2 is not a primitive root modulo p

so that the assumptions in Corollary 2 hold. Thus it follows from Corollary 2 that both (18) and
(19) (for all ` ≤ L) holf so that, indeed, every Ep definied in this way is of the desired properties.

Note that a0, a1, . . . , at in (22) and (23) can be chosen in (p− 1)pt−1 ≥ 1
2
pt = p[k/2] ways so that

there are “many” polynomials g(X) of form (22). Moreover, for all g(X) we have

d(X)|(kg(X)−Xg′(X)) = (k − t)atX
t + . . .

(where (k − t)atX
t is the highest degree term) whence deg d(X) ≤ t

so that
deg f(X) = deg g(X)− deg d(X) ≥ k − t = k − [k/2] ≥ k/2.

This shows that although different polynomials g(X) may lead to the same polynomial f(X), there
is little chance for this, secondly, when reducing the polynomials g(X) to the polynomials f(X), the
resulting polynomials in general will not be “too simple”, “degenerated” (say, linear) polynomials,
in other words, the family of the sequences Ep defined in this way is both “large” and “of high
complexity”, we will return to this question in a subsequent paper.
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