
Higher-Order Masking Schemes for S-Boxes

Claude Carlet1, Louis Goubin2, Emmanuel Prouff3, Michael Quisquater2, and
Matthieu Rivain4

1 LAGA, Université de Paris 8
claude.carlet@univ-paris8.fr

2 Université de Versailles St-Quentin-en-Yvelines
louis.goubin@prism.uvsq.fr

michael.quisquater@prism.uvsq.fr
3 Oberthur Technologies
e.prouff@gmail.com

4 CryptoExperts
matthieu.rivain@cryptoexperts.com

Abstract. Masking is a common countermeasure against side-channel
attacks. The principle is to randomly split every sensitive intermediate
variable occurring in the computation into d+1 shares, where d is called
the masking order and plays the role of a security parameter. The main is-
sue while applying masking to protect a block cipher implementation is to
design an efficient scheme for the s-box computations. Actually, masking
schemes with arbitrary order only exist for Boolean circuits and for the
AES s-box. Although any s-box can be represented as a Boolean circuit,
applying such a strategy leads to inefficient implementation in software.
The design of an efficient and generic higher-order masking scheme was
hence until now an open problem. In this paper, we introduce the first
masking schemes which can be applied in software to efficiently protect
any s-box at any order. We first describe a general masking method and
we introduce a new criterion for an s-box that relates to the best effi-
ciency achievable with this method. Then we propose concrete schemes
that aim to approach the criterion. Specifically, we give optimal meth-
ods for the set of power functions, and we give efficient heuristics for the
general case. As an illustration we apply the new schemes to the DES
and PRESENT s-boxes and we provide implementation results.

1 Introduction

Side-channel analysis is a class of cryptanalytic attacks that exploit the physical
environment of a cryptosystem to recover some leakage about its secrets. It
is often more efficient than a cryptanalysis mounted in the so-called black-box
model where no leakage occurs. In particular, continuous side-channel attacks in
which the adversary gets information at each invocation of the cryptosystem are
especially threatening. Common attacks as those exploiting the running-time,
the power consumption or the electromagnetic radiations of a cryptographic
computation fall into this class.

Many implementations of block ciphers have been practically broken by con-
tinuous side-channel analysis — see for instance [6, 18, 20, 22] — and securing
them has been a longstanding issue for the embedded systems industry. A sound
approach is to use secret sharing [3, 30], often called masking in the context of
side-channel attacks. This approach consists in splitting each sensitive variable of
the implementation (i.e. variables depending on the secret key) into d+1 shares,
where d is called the masking order. It has been shown that the complexity of
mounting a successful side-channel attack against a masked implementation in-
creases exponentially with the masking order [7]. Starting from this observation,
the design of efficient masking schemes for different ciphers has become a fore-
ground issue.

The DES cipher has been the focus of first designs, with the notable work of
Goubin and Patarin in [13]. Further schemes have been subsequently published,
in particular for the AES cipher, applying masking in hardware or software
with different area-time-memory trade-offs [2,4,21,23,26,29]. All these schemes
deal with first-order masking, namely the intermediate variables are split in two
shares (a mask and a masked variable). As a result, they only thwart first order
side-channel attacks in which the adversary exploits the leakage of a single inter-
mediate computation. During the last years, several works have demonstrated
that this defense strategy was not sufficient for long term security purpose and
that higher-order attacks could be successfully performed against cryptographic
implementations (see e.g. [22]). This has raised the need for secure and efficient
higher-order masking schemes.

Higher-Order Masking. The principle of higher-order masking is to split
every sensitive variable x occurring during the computation into d+1 shares x0,
. . . , xd in such a way that the following relation is satisfied for a group operation
⊥:

x0 ⊥ x1 ⊥ · · · ⊥ xd = x . (1)

In the rest of the paper, we shall consider that ⊥ is the addition over some field of
characteristic 2. Usually, the d shares x1, . . . , xd (called the masks) are randomly
picked up and the last one x0 (called the masked variable) is processed such that
it satisfies (1). When d random masks are involved per sensitive variable the
masking is said to be of order d. The tuple (xi)i is further called a dth-order
encoding of x.

When higher-order masking is involved to protect a block cipher implemen-
tation, a so-called masking scheme must be designed to enable the computation
on masked data. Such a scheme must ensure that the final shares correspond
to the expected ciphertext on the one hand, and it must ensure the dth-order
security property for the chosen order d on the other hand. The latter property
states that every tuple of d or less intermediate variables is independent of any
sensitive variable. When satisfied, it guarantees that no attack of order lower
than or equal to d is possible.

Most block cipher structures (e.g. AES or DES) are iterative, meaning that
they apply several times a same transformation, called round, to an internal state

initially filled with the plaintext. The round itself is composed of a key addition,
one or several linear transformation(s) and one or several non-linear s-box(es).
Key addition and linear transformations are easily handled as linearity enables
to process each share independently. The main difficulty in designing masking
schemes for block ciphers hence lies in masking the s-box(es).

Masking and S-Boxes. Whereas many solutions have been proposed to deal
with the case of first-order masking (see e.g. [2, 4, 21, 25]), only a few solutions
exist for the higher-order case. A scheme has been proposed by Schramm and
Paar in [29] which generalizes the (first-order) table recomputation method de-
scribed in [2,21]. Although the authors apply their method in the particular case
of an AES implementation, it is generic and can be applied to protect any s-
box. Unfortunately, this scheme has been shown to be vulnerable to a 3rd-order
attack whatever the chosen masking order [8]. In other words, it only provides
2nd-order security. Further schemes were proposed by Rivain, Dottax and Prouff
in [26] with formal security proofs but still limited to 2nd-order security.

The first scheme achieving dth-order security for an arbitrary chosen d has
been designed by Ishai, Sahai and Wagner in [14]. The here-called ISW scheme
consists in masking the Boolean representation of an algorithm which is com-
posed of logical operations NOT and AND. Securing a NOT for any order d
is straightforward since x =

⊕
i xi implies NOT(x) = NOT(x0) ⊕ x1 · · · ⊕ xd.

The main contribution of [14] is a method to secure the AND operation for
any arbitrary order d (the description of this scheme is recalled in Section 2.1).
Although the ISW scheme is an important theoretical result, its practical ap-
plication faces some issues. At the hardware level, the obtained circuits may
have prohibitive area requirements, especially for being used in embedded sys-
tems (privileged targets of side-channel attacks). Moreover, Mangard et al. have
shown in [19,20] that masking at the hardware level is sensitive to glitches which
induce unpredicted flaws in masked circuits. Preventing glitches can be done
thanks to synchronization elements (e.g. registers or latches) [24] or by perform-
ing additional sharing [23] but in both cases, the circuit size is still significantly
increased. On the other hand, a direct application of the ISW scheme to secure
an s-box computation in software would consist in taking the Boolean repre-
sentation of the s-box and in processing every logical operation successively in
a masked way. Since the Boolean representation of common s-boxes involves a
huge number of logical operations, the resulting implementation would likely be
inefficient.

In the particular case of AES, a solution has been proposed by Rivain and
Prouff in [27] to efficiently mask the s-box processing at any order. Specifically,
the authors use the algebraic structure of the AES s-box, which is the composi-
tion of an affine function over F8

2 with the power function x 7→ x254 over F256,
and they show that it can be expressed as a sequence of operations involving a
few linear functions over F8

2 (easy to mask) and four multiplications over F256.
The latter are secured by applying the ISW scheme (generalized to F256). Sub-
sequently, Kim, Hong and Lim have presented in [15] an extension of Rivain and

Prouff’s scheme, which is based on the tower-field approach from [28]. On the
other hand, Genelle, Prouff and Quisquater have proposed in [12] a higher-order
scheme based on the alternate use of Boolean masking and multiplicative mask-
ing. Although schemes in [15] and [12] achieve better performances than [27],
they are still restricted to the AES s-box and their generalization to any s-box
(or subclasses) is an open issue.

Our Contribution. The present paper introduces the first higher-order mask-
ing scheme which can be applied to efficiently protect any s-box processing in
software. We first give a general method that extends the Rivain and Prouff
approach to mask any s-box and we introduce a new criterion for an s-box that
relates to the best efficiency achievable with our method. Then we give concrete
schemes that aim to approach the so-called masking complexity. Specifically, we
give optimal methods for the set of power functions, and we give efficient heuris-
tics for the general case. As an illustration we apply our scheme to the DES and
PRESENT s-boxes and we provide implementation results.

2 Higher-Order Masking of any S-Box

In this section, we describe a general method to mask any s-box and we introduce
a related masking complexity criterion.

2.1 General Method

An s-box is a function from {0, 1}n to {0, 1}m with m ≤ n and n small (typically
n ∈ {4, 6, 8}). We shall use the terminology of (n,m) s-box when the dimensions
need to be specified. To design a higher-order masking scheme for such a function,
our approach is to express it as a sequence of affine functions over Fn2 , and
multiplications over F2n . Such a strategy is always possible since any (n,m)

s-box can be represented by a polynomial function x 7→
∑2n−1
i=0 aix

i over F2n

where the ai are constant coefficients in F2n . The ai can be obtained from the
s-box look-up table by applying Lagrange’s Interpolation Theorem. When m is
strictly lower than n, the m-bit outputs can be embedded into F2n by padding
them to n-bit outputs (e.g. by setting most significant bits to 0). The padding is
then removed after the polynomial evaluation. We recall hereafter the Lagrange
Interpolation Theorem applied to our context.

Theorem 1 (Lagrange Interpolation). Let S be a function F2n → F2n .
Then, for every x ∈ F2n , we have:

S(x) =
∑
α∈F2n

S(α)`α(x) , (2)

where, for every α ∈ F2n , `α is defined as:

`α(x) =
∏
β∈F2n
β 6=α

x− β
α− β

. (3)

Remark 1. The `α are called the Lagrange basis polynomials and satisfy `α(x) =
1 if x = α and `α(x) = 0 otherwise. In particular, every `α is a monic polynomial
of degree 2n−1, and we have `α(x) = (x+α)2

n−1 +1. Moreover, the coefficients
of S(x) can be directly computed from the Mattson-Solomon polynomial by:

ai =

S(0) if i = 0∑2n−2
k=0 S(αk)α−ki if 1 ≤ i ≤ 2n − 2

S(1) +
∑2n−2
i=0 ai if i = 2n − 1

for every primitive element α of F2n .

The polynomial representation of an s-box is based on four kinds of oper-
ations over F2n : additions, scalar multiplications (i.e. multiplications by con-
stants), squares, and regular multiplications (i.e. of two different variables). Ex-
cept for the latter, all these operations are Fn2 -linear (or Fn2 -affine), that is the
corresponding function over Fn2 are linear (resp. affine). The processing of any
s-box can then be performed as a sequence of Fn2 -affine functions (themselves
composed of additions, squares and scalar multiplications over F2n) and of reg-
ular multiplications over F2n , called nonlinear multiplications in the following.
Masking an s-box processing can hence be done by masking every affine function
and every nonlinear multiplication independently. We recall hereafter how this
can be done for each category.

Masking of Fn2 -affine functions. Let x =
∑
i xi be a shared variable. Every affine

function g with additive part cg satisfies:

g(x) =

{∑d
i=0 g(xi) if d is even,

cg +
∑d
i=0 g(xi) if d is odd.

The masked processing of g then simply consists in evaluating g for every share
xi, and possibly correcting one of them by addition of cg. Such a processing
clearly achieves dth-order security as the shares are all processed independently.

Masking of nonlinear multiplications. Every nonlinear multiplication can be pro-
cessed by using the ISW scheme. Let a, b ∈ F2n and let (ai)0≤i≤d and (bi)0≤i≤d
be dth-order encoding of a and b. To securely compute a dth-order encoding
(ci)0≤i≤d of c = ab, the ISW method over F2n performs as follows:5

1. For every 0 ≤ i < j ≤ d, pick up a random value ri,j in F2n .
2. For every 0 ≤ i < j ≤ d, compute rj,i = (ri,j + aibj) + ajbi.
3. For every 0 ≤ i ≤ d, compute ci = aibi +

∑
j 6=i ri,j .

It can be checked that the obtained shares are a sound encoding of c. Namely,
we have:

d∑
i=0

ci =
(d∑
i=0

ai
)(d∑

i=0

bi
)

= ab = c.

5 The use of brackets indicates the order in which the operations are performed, which
is mandatory for the security of the scheme.

In [14] it is shown that the above computation achieves (d/2)th-order security.
A tighter security proof is given in [27] which shows that dth-order security is
actually achieved as long as the masks of the two inputs are independent.

Remark 2. Another method to process a masked multiplication at an arbitrary
order is used in [10] to achieve provable security under specific leakage assump-
tions. However this method requires more operations and more random bits than
the ISW scheme does. For this reason, the ISW scheme should be preferred in a
usual dth-order security model.

2.2 Masking Complexity

The scheme described in the previous section secures the computation of any
(n,m) s-box S by masking its polynomial representation over F2n . The evalua-
tion of such a polynomial is composed of Fn2 -affine functions g and of nonlinear
multiplications. The masked processing of each Fn2 -affine function g merely in-
volves d+ 1 evaluations of g itself, while it involves (d+ 1)2 field multiplications,
2d(d+ 1) field additions and the generation of nd(d+ 1)/2 random bits for each
nonlinear multiplication. The masked processing of Fn2 -affine functions hence
quickly becomes negligible compared to the masked processing of nonlinear mul-
tiplications as d grows. This observation motivates the following definition of the
masking complexity for an s-box.

Definition 1 (Masking Complexity). Let m and n be two integers such that
m ≤ n. The masking complexity of a (n,m) s-box is the minimal number of
nonlinear multiplications required to evaluate its polynomial representation over
F2n .

The following proposition directly results from this definition.

Proposition 1. The masking complexity of an s-box is invariant when composed
with Fn2 -affine bijections in input and/or in output.

Remark 3. Since field isomorphisms are F2-linear bijections, the choice of the
irreducible polynomial to represent field elements does not impact the masking
complexity of an s-box.

In the next sections, we address the issue of finding polynomial evaluations of
an s-box that aim at minimizing the number of nonlinear multiplications. Those
constructions will enable us to deduce upper bounds on the masking complexity
of an s-box. We first study the case of power functions whose polynomial rep-
resentation has a single monomial (e.g. the AES s-box). For these functions, we
exhibit the exact masking complexity by deriving addition chains with minimal
number of nonlinear multiplications. We then address the general case and pro-
vide efficient heuristics to evaluate any s-box with a low number of nonlinear
multiplications.

3 Optimal Masking of Power Functions

In this section, we consider s-boxes for which the polynomial representation over
F2n is a single monomial. These s-boxes are usually called power functions in the
literature. We describe a generic method to compute the masking complexity of
such s-boxes. Our method involves the notion of cyclotomic class.

Definition 2. Let α ∈ [0; 2n−2]. The cyclotomic class of α is the set Cα defined
by:

Cα = {α · 2i mod 2n − 1; i ∈ [0;n− 1]}.

We have the following proposition.

Proposition 2. Let µ(m) denote the multiplicative order of 2 modulo m and
let ϕ denote the Euler’s totient function. For every divisor δ of 2n − 1, the
number of distinct cyclotomic classes Cα ⊆ [0; 2n − 2] with gcd(α, 2n − 1) = δ is
ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number of distinct cyclotomic classes

of [0; 2n − 2] equals: ∑
δ|(2n−1)

ϕ(δ)

µ(δ)
.

Proof. Proposition 2 can be deduced from the following facts:

– An integer α ∈ [0; 2n − 2] satisfies gcd(α, 2n − 1) = δ if and only if α = δβ,
with gcd(β, 2

n−1
δ) = 1. There are thus ϕ

(
2n−1
δ

)
integers α ∈ [0; 2n − 2] such

that gcd(α, 2n − 1) = δ.
– For any α such that gcd(α, 2n − 1) = δ (hence of the form α = δβ with

gcd(β, 2
n−1
δ) = 1), we have α · 2i ≡ α · 2j mod 2n − 1 if and only if β · 2i ≡

β · 2j mod 2n−1
δ , that is, if and only if 2i ≡ 2j mod 2n−1

δ . Hence Cα has

cardinality #Cα = µ
(
2n−1
δ

)
.

The set of integers α ∈ [0; 2n−2] such that gcd(α, 2n−1) = δ is partitioned into
cyclotomic classes, each of them having cardinality µ

(
2n−1
δ

)
. Hence the number

of such cyclotomic classes is ϕ
(
2n−1
δ

)
/µ
(
2n−1
δ

)
. It follows that the total number

of distinct cyclotomic classes of [0; 2n−2] equals
∑
δ|(2n−1) ϕ

(
2n−1
δ

)
/µ
(
2n−1
δ

)
=∑

δ|(2n−1) ϕ(δ)/µ(δ).
�

The study of cyclotomic classes is interesting in our context since a power
xα can be computed from a power xβ without any nonlinear multiplication
if and only if α and β lie in the same cyclotomic class. Hence, all the power
functions with exponents within a given cyclotomic class have the same masking
complexity and computing the masking complexity for all the power functions
over F2n thus amounts to compute this complexity for each cyclotomic class
over F2n . In what follows, we perform such a computation for fields F2n of small
dimensions n.

To compute the masking complexity for an element in a cyclotomic class, we
use the following observation: determining the masking complexity of a power
function x 7→ xα amounts to find the addition chain for α with the least number
of additions which are not doublings (see [16] for an introduction to addition
chains). This kind of addition chain is usually called a 2-addition chain.6 Let
(αi)i denote some addition chain. At step i, it is possible to obtain any element
within the cyclotomic classes (Cαj)j≤i using doublings only. As we are interested
in finding the addition chain with the least number of additions which are not
doublings, the problem we need to solve is the following: given some α ∈ Cα, find
the shortest chain Cα0

→ Cα1
→ · · · → Cαk where Cα0

= C1, Cαk = Cα and for
every i ∈ [1; k], there exists j, ` < i such that αi = α′j + α′` where α′j ∈ Cαj and
α′` ∈ Cα` .

We shall denote by Mn
k the class of exponents α such that x 7→ xα has a

masking complexity equal to k. The family of classes (Mn
k)k is a partition of

[0; 2n − 2] and each Mn
k is the union of one or several cyclotomic classes. For

a small dimension n, we can proceed by exhaustive search to determine the
shortest 2-addition chain(s) for each cyclotomic class. We implemented such an
exhaustive search from which we obtained the masking complexity classes Mn

k

for n ≤ 11 (note that in practice most s-boxes have dimension n ≤ 8). Table
1 summarizes the obtained results for n ∈ {4, 6, 8} (usual dimensions). Results
for other dimensions are summarized in appendix. Additionally, Table 2 gives
the optimal 2-addition chains (in exponential notation) corresponding to every
cyclotomic class for n = 8.

It is interesting to note that for every n, the inverse function x 7→ x2
n−2

related to the cyclotomic class C2n−1−1 always has the highest masking com-
plexity. In particular, the inverse function x 7→ x254 (for n = 8) used in the AES
has a masking complexity of 4 as it was conjectured in [27].

4 Efficient Heuristics for General S-Boxes

We now address the general case of an s-box having a polynomial representation∑2n−1
j=0 ajx

j over F2n . A straightforward solution is to successively compute every

power xj using xj = (xj/2)2 if j is even and xj = xj−1x if j is odd, while updating
the polynomial value by adding the monomial ajx

j at every step. Such a method
requires 2n−1 − 1 nonlinear multiplications. As we show hereafter, less naive
methods exist that substantially lower the number of nonlinear multiplications.
We propose two different methods and then compare their efficiency.

6 This problem has been studied in the general setting where the multiplication by q
(and not specifically by 2) is considered free and the obtained addition chains are
called q-addition chains [31]. The purpose is to find efficient exponentiation methods
in Fq (as in such field the Frobenius map x 7→ xq is efficient). To the best of our
knowledge, apart from a specific application to the SFLASH signature algorithm
in [1], the case of 2-addition chains has not been particularly investigated.

Table 1. Cyclotomic classes for n ∈ {4, 6, 8} w.r.t. the masking complexity k.

k Cyclotomic classes inMn
k

n = 4
0 C0 = {0}, C1 = {1, 2, 4, 8}
1 C3 = {3, 6, 12, 9}, C5 = {5, 10}
2 C7 = {7, 14, 13, 11}

n = 6
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32}
1 C3 = {3, 6, 12, 24, 48, 33}, C5 = {5, 10, 20, 40, 17, 34}, C9 = {9, 18, 36}
2 C7 = {7, 14, 28, 56, 49, 35}, C11 = {11, 22, 44, 25, 50, 37},

C13 = {13, 26, 52, 41, 19, 38}, C15 = {15, 30, 29, 27, 23},
C21 = {21, 42}, C27 = {27, 54, 45}

3 C23 = {23, 46, 29, 58, 53, 43}, C31 = {31, 62, 61, 59, 55, 47}
n = 8

0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64, 128}
1 C3 = {3, 6, 12, 24, 48, 96, 192, 129}, C5 = {5, 10, 20, 40, 80, 160, 65, 130},

C9 = {9, 18, 36, 72, 144, 33, 66, 132}, C17 = {17, 34, 68, 136}
2 C7 = {7, 14, 28, 56, 112, 224, 193, 131}, C11 = {11, 22, 44, 88, 176, 97, 194, 133},

C13 = {13, 26, 52, 104, 208, 161, 67, 134}, C15 = {15, 30, 60, 120, 240, 225, 195, 135},
C19 = {19, 38, 76, 152, 49, 98, 196, 137}, C21 = {21, 42, 84, 168, 81, 162, 69, 138},

C25 = {25, 50, 100, 200, 145, 35, 70, 140}, C27 = {27, 54, 108, 216, 177, 99, 198, 141},
C37 = {37, 74, 148, 41, 82, 164, 73, 146}, C45 = {45, 90, 180, 105, 210, 165, 75, 150},

C51 = {51, 102, 204, 153}, C85 = {85, 170}
3 C23 = {23, 46, 92, 184, 113, 226, 197, 139}, C29 = {29, 58, 116, 232, 209, 163, 71, 142},

C31 = {31, 62, 124, 248, 241, 227, 199, 143}, C39 = {39, 78, 156, 57, 114, 228, 201, 147},
C43 = {43, 86, 172, 89, 178, 101, 202, 149}, C47 = {47, 94, 188, 121, 242, 229, 203, 151},
C53 = {53, 106, 212, 169, 83, 166, 77, 154}, C55 = {55, 110, 220, 185, 115, 230, 205, 155},
C59 = {59, 118, 236, 217, 179, 103, 206, 157}, C61 = {61, 122, 244, 233, 211, 167, 79, 158},
C63 = {63, 126, 252, 249, 243, 231, 207, 159}, C87 = {87, 174, 93, 186, 117, 234, 213, 171},
C91 = {91, 182, 109, 218, 181, 107, 214, 173}, C95 = {95, 190, 125, 250, 245, 235, 215, 175},

C111 = {111, 222, 189, 123, 246, 237, 219, 183}, C119 = {119, 238, 221, 187}
4 C127 = {127, 254, 253, 251, 247, 239, 223, 191}

Table 2. Optimal 2-addition chains (in exponential notation) for cyclotomic classes
for n = 8.

k 2-addition chains with k nonlinear multiplications

1 x3 ← x× x2 – x5 ← x× x4

x9 ← x× x8 – x17 ← x× x16

x7 ← x× x2 × x4 – x11 ← x× x2 × x8

x13 ← x× x4 × x8 – x15 ← x3 × (x3)4

2 x19 ← x× x2 × x16 – x21 ← x× x4 × x16

x27 ← x3 × (x3)8 – x37 ← x× x4 × x32

x45 ← x5 × (x5)8 – x51 ← x3 × (x3)16

x85 ← x5 × (x5)16

x23 ← x× x2 × x4 × x16 – x29 ← x× x4 × x8 × x16

x31 ← x3 × (x3)4 × x16 – x29 ← x× x2 × x4 × x32

x43 ← x× x2 × x8 × x32 – x47 ← x3 × (x3)4 × x32

3 x53 ← x× x2 × x16 × x32 – x55 ← x3 × x4 × (x3)16

x59 ← x3 × (x3)8 × x32 – x59 ← x5 × x16 × (x5)8

x63 ← x7 × (x7)8 – x87 ← x2 × x5 × (x5)16

x91 ← x3 × (x3)8 × x64 – x95 ← x5 × (x5)2 × (x5)16

x111 ← x3 × (x3)4 × (x3)32 – x63 ← x7 × (x7)16

4 x127 ← x3 × (x3)4 × (x3)16 × x64

4.1 Cyclotomic Method

Let q denote the number of distinct cyclotomic classes of [0; 2n − 2]. The poly-
nomial representation of S can be written as:

S(x) = a0 +
(q∑
i=1

Qi(x)
)

+ a2n−1 x
2n−1 ,

where the Qi are polynomials such that every Qi has powers from a single
cyclotomic class Cαi , namely we can write Qi(x) =

∑
j ai,jx

αi2
j

for some co-
efficients ai,j in F2n . Let us then denote Li the linearized polynomial Li(x) =∑
j ai,jx

2j which is a Fn2 -linear function of x. We have Qi(x) = Li(x
αi) by

definition. The cyclotomic method simply consists in deriving the powers xαi

for each cyclotomic class Cαi as well as x2
n−1 if a2n−1 6= 0, and in evaluating

S(x) = a0 +
(∑q

i=1 Li(x
αi)
)

+a2n−1 x
2n−1. The powers xαi can each be derived

with a single nonlinear multiplication. This is obvious for the αi lying in Mn
1 .

Then it is clear that every power xαi with αi ∈ Mn
k+1 can be derived with a

single multiplication from the powers (xαi)αi∈Mn
k
. The power x2

n−1 can then

be derived with a single nonlinear multiplication from the power x2
n−2. The

cyclotomic method hence involves a number of nonlinear multiplications equal
to the number of cyclotomic classes, minus 2 (as x0 and x1 are obtained without
nonlinear multiplication), plus 1 (to derive x2

n−1). By Proposition 2, we then
have the following result.

Proposition 3 (Cyclotomic Method). Let m and n be two positive integers
such that m ≤ n. The masking complexity of every (n,m) s-box is upper-bounded
by: ∑

δ|(2n−1)

ϕ(δ)

µ(δ)
− 1 .

An (n,m) s-box S is said to be balanced if for every y ∈ {0, 1}m, the number
of preimages of y for S is constant to 2n−m. The following lemma gives a well-
known folklore result.

Lemma 1. Let m and n be two positive integers such that m ≤ n. The polyno-
mial representation of every balanced (n,m) s-box has degree strictly lower than
2n − 1.

Proof. Since Lagrange basis polynomials are all monic of degree 2n − 1, the
coefficient a of the power to the 2n − 1 in the polynomial representation of S
satisfies a =

∑
α∈F2n

S(α), which equals 0 if S is balanced. �

When the polynomial representation of the s-box has degree strictly lower
than 2n − 1, the cyclotomic method saves one nonlinear multiplication since
the power x2

n−1 is not required. Namely, we have the following corollary of
Proposition 3.

Corollary 1 (Cyclotomic Method). Let m and n be two positive integers
such that m ≤ n and let S be a (n,m) s-box. If S is balanced, then the masking
complexity of S is upper-bounded by:

∑
δ|(2n−1)

ϕ(δ)

µ(δ)
− 2 .

4.2 Parity-Split Method

The parity-split method is composed of two stages. The first stage derives a
set of powers (xj)j≤q for some q using the straightforward method described
in the introduction of this section. The second stage essentially consists in an
application of the Knuth-Eve polynomial evaluation algorithm [9, 17] which is
based on a recursive use of the following lemma.

Lemma 2. Let n and t be two positive integers and let Q be a polynomial of
degree t over F2n [x]. There exist two polynomials Q1 and Q2 of degree upper-
bounded by bt/2c over F2n [x] such that:

Q(x) = Q1(x2) +Q2(x2)x . (4)

By applying Lemma 2 to the polynomial representation of S, we get S(x) =
Q1(x2) + Q2(x2)x, where Q1 and Q2 are two polynomials of degrees upper-
bounded by 2n−1 − 1. We deduce that S can be computed based on the set of
powers (x2j)j≤2n−1−1 plus a single multiplication by x. Then, applying Lemma

2 again to the polynomials Q1 and Q2 both of degrees upper bounded by 2n−1−
1, we get two new pairs of polynomials (Q11, Q12) and (Q21, Q22) such that
Q1(x2) = Q11(x4) +Q12(x4)x2 and Q2(x2) = Q21(x4) +Q22(x4)x2. The degrees
of the new polynomials are upper bounded by 2n−2 − 1. We then deduce that S
can be computed based on the set of powers (x4j)j≤2n−2−1 plus 1 multiplication

by x and 2 multiplications by x2. Eventually, by applying Lemma 2 recursively
r times, we get an evaluation of S involving evaluations in x2

r

of polynomials of
degrees upper-bounded by 2n−r − 1, plus

∑r−1
i=0 2i = 2r − 1 multiplications by

powers of x of the form x2
i

with i ≤ r − 1. The overall evaluation of S hence
requires 2r − 1 nonlinear multiplications (the x2

i

being obtained with squares
only) plus the evaluation in x2

r

of polynomials of degrees upper-bounded by
2n−r−1. The latter evaluation can be performed by first deriving all the powers
(x2

rj)j≤2n−r−1 and then evaluating the polynomials (which only involves scalar
multiplications and additions once the powers have been derived). For every
j ≤ 2n−r − 1, the powers (x2

rj)j≤2n−r−1 can be computed successively from

y = x2
r

by yj = (yj/2)2 if j is even and yj = yj−1x if j is odd. This takes some
squares plus 2n−r−1 − 1 nonlinear multiplications (i.e. one per odd integer in
[3, 2n−r − 1]).

We then deduce the following proposition.

Proposition 4. Let m and n be two positive integers such that m ≤ n. The
masking complexity of every (n,m) s-box is upper-bounded by:

min
0≤r≤n

(2n−r−1 + 2r)− 2 =

{
3 · 2(n/2)−1 − 2 if n is even,
2(n+1)/2 − 2 if n is odd.

(5)

Note that the value of r for which the minimum is reached in (5) is r = bn2 c.

4.3 Comparison

Table 3 summarizes the number of nonlinear multiplications obtained by the
cyclotomic method (for balanced s-boxes) and by the parity-split method. We see
that the cyclotomic method works better for small dimensions (n ≤ 5) and the
parity-split method for higher dimensions (n ≥ 6). Furthermore, the superiority
of the parity-split method becomes significant as n grows.

Table 3. Number of nonlinear multiplications w.r.t. the evaluation method.

Method \ n 3 4 5 6 7 8 9 10 11

Cyclotomic 1 3 5 11 17 33 53 105 192

Parity-Split 2 4 6 10 14 22 30 46 62

We emphasize that these bounds may not be optimal, namely they may be
higher than the maximum masking complexity of (n,m) s-boxes. We let open
the issue of finding more efficient (or provably optimal) methods in the general
case for further research.

5 Application to DES and PRESENT

In this section we apply the proposed methods to the s-boxes of two different
block ciphers: the well-known and still widely used Data Encryption Standard
(DES) [11], and the lightweight block cipher PRESENT [5]. The former uses
eight different (6, 4) s-boxes and the latter uses a single (4, 4) s-box. According
to Table 3, we shall prefer the parity-split method for the DES s-boxes (10
nonlinear multiplications), and the cyclotomic method for the PRESENT s-box
(3 nonlinear multiplications).

5.1 Parity-Split Method on DES S-boxes

The parity-split method on a DES s-box uses a polynomial representation of the
s-box over F64 which satisfies:

S : x 7−→ Q0(x8) +Q1(x8) · x4 +
(
Q2(x8) +Q3(x8) · x4

)
· x2

+
(
Q4(x8) +Q5(x8) · x4 +

(
Q6(x8) +Q7(x8) · x4

)
· x2
)
· x (6)

where the Qi are degree-7 polynomials, namely, there exist coefficients ai,j for
0 ≤ i, j ≤ 7 such that:

Qi(x
8) = ai,0 + ai,1x

8 + ai,2x
16 + ai,3x

24 + ai,4x
32 + ai,5x

40 + ai,6x
48 + ai,7x

56 .

We first derive the powers x8j for j = 1, 2, . . . , 7, which is done at the cost
of 3 nonlinear multiplications by:

x8 ← ((x2)2)2; x16 ← (x8)2; x24 ← x8 · x16; x32 ← (x16)2;

x40 ← x8 · x32; x48 ← (x24)2; x56 ← x8 · x48;

Then we evaluate each polynomial Qi(x
8) as a linear combination of the above

powers. Finally, we evaluate (6) at the cost of 7 nonlinear multiplications and a
few additions. The nonlinear multiplications are computed using the ISW scheme
over F64 such as recalled in Section 2.1. A detailed implementation for the overall
masked s-box evaluation is given in the extended version of this paper.

5.2 Cyclotomic Method on PRESENT S-box

The cyclotomic method on the PRESENT s-box starts from the straightforward
polynomial representation of the s-box over F16:

S : x 7−→ a0 + a1x+ a2x
2 + · · ·+ a14x

14 ,

(where the degree is indeed strictly lower than 15 by Lemma 1). We then have:

S(x) = a0 + L1(x) + L3(x3) + L5(x5) + L7(x7) . (7)

where:

L1 : x 7→ a1x+ a2x
2 + a4x

4 + a8x
8

L3 : x 7→ a3x+ a6x
2 + a12x

4 + a9x
8

L5 : x 7→ a5x+ a10x
2

L7 : x 7→ a7x+ a14x
2 + a13x

4 + a11x
8

and the Li are F4
2-linear.

We first derive the powers x3, x5, and x7, which is done at the cost of 3
nonlinear multiplications by: x3 ← x · x2; x5 ← x3 · x2; x7 ← x5 · x2. Then we
evaluate (7) which costs a few linear transformations and additions. A detailed
implementation for the overall masked s-box evaluation is given in the extended
version of this paper.

5.3 Implementation Results

In this section, we give implementation results for our scheme applied to DES
and PRESENT s-boxes. For comparison, we also give performances of some

higher-order masking schemes for the AES s-box, as well as performances of
existing schemes for DES and PRESENT s-boxes at orders 1 and 2. For the
AES s-box processing, we implemented Rivain and Prouff’s method [27] and
its improvement by Kim et al. [15]. We did not implement Genelle et al. ’s
scheme [12] since it addresses the masking of an overall AES and is not interesting
while focusing on a single s-box processing. Regarding existing schemes for DES
and PRESENT s-boxes, we implemented the generic methods proposed in [25]
(for d = 1) and in [26] (for d = 2). We also implemented the improvement of
these schemes described in [26, §3.3] that consists in treating two 4-bit outputs
at the same time.7 Note that we did not implement the table re-computation
method (for d = 1) since it only makes sense for an overall cipher and not for a
single s-box processing.

Table 4 lists the timing/memory performances of the different implementa-
tions. We wrote the codes in assembly language for an 8051 based 8-bit archi-
tecture with bit-addressable memory. ROM consumptions (i.e. code sizes) are not
listed since they are not prohibitive.

As expected, the cyclotomic method is very efficient when applied to protect
the PRESENT s-box. The small input dimension of the s-box indeed implies a
low masking complexity (equal to 3). Moreover, it enables to tabulate the mul-
tiplication over F16. At first order, it is even slightly better than the method
in [25] (or its improvement). At second order, the cost of the secure multipli-
cations involved in the cyclotomic method is approximatively doubled, which
explains that the overall cost is multiplied by 1.8. This makes it less efficient
than [25] and [26], which are less impacted by the increase of the masking order
from 1 to 2. At third order, our method is the only one. The number of cycles
staying small (630), Table 4 shows that achieving resistance against 3rd-order
side-channel analysis is realistic for an implementation of PRESENT on a 8051
architecture. For DES s-boxes, the parity-split method is less efficient than the
state-of-the art methods for d = 1, 2. This is an expected consequence of the
high number of nonlinear multiplications (here 10) achieved with the parity-
split method in dimension 6 and of the fact that the field multiplications can no
longer be tabulated (and must therefore be computed thanks to log/alog look-up
tables). At third order, the timing efficiency of the method becomes very low.
The masked s-box processing is 5 (resp. 10) times slower than the efficiency of
the AES s-box protected thanks to [15] (resp. [27]), though its input dimension
is smaller.

The ranking of the timing efficiencies for AES, DES and PRESENT s-boxes
is correlated to the number of nonlinear multiplications in the used scheme (3,
4-5, and 10, for PRESENT, AES and DES respectively) which underline the
soundness of the masking complexity criterion. Therefore, while selecting an s-
box for a block cipher design, one should favor an s-box with small masking
complexity if side-channel attacks are taken into account.

7 This improvement is only described in [26] for d = 2 but it can be applied likewise
to the 1st-order scheme of [25].

Table 4. Comparison of secure s-box implementations

Method Reference cycles RAM (bytes)

First Order Masking

1. AES s-box [27] 533 10
2. AES s-box [15] 320 14
3. DES s-box Simple version [25] 1096 2
4. DES s-box Improved version [25] & [26] 439 14
5. DES s-box this paper 4100 50
6. PRESENT s-box Simple Version [25] 281 2
7. PRESENT s-box Improved Version [25] & [26] 231 14
4. PRESENT s-box this paper 220 18

Second Order Masking

1. AES s-box [27] 832 18
2. AES s-box [15] 594 24
3. DES s-box Simple version [26] 1045 69
4. DES s-box Improved version [26] 652 39
5. DES s-box this paper 7000 78
6. PRESENT s-box Simple Version [26] 277 21
7. PRESENT s-box Improved Version [26] 284 15
8. PRESENT s-box this paper 400 31

Third Order Masking

1. AES s-box [27] 1905 28
2. AES s-box [15] 965 38
3. DES s-box this paper 10500 108
4. PRESENT s-box this paper 630 44

6 Discussion

In previous sections we have introduced the first schemes that can be used to
mask any s-box at any order with fair performances in software. In particular,
these schemes enable to apply higher-order masking on random s-boxes (e.g. the
DES s-boxes) which have no specific mathematical structure. Prior to our work,
the only existing methods were the circuit-oriented proposals of Ishai et al. [14]
and of Faust et al. [10]. The main purpose of these works was a proof of concept
for applying higher-order masking to circuits with formal security proofs, but
they did not address efficient implementation. A direct application of [14] or [10]
to a block cipher consists in taking its Boolean representation and in replacing
every XOR and AND with O(d) and O(d2) logical operations respectively (where
d is the masking order). Applying such a strategy in software leads to inefficient
implementation as the Boolean representation of an s-box includes a huge num-
ber of nonlinear gates (with a O(d2) factor to be protected). Compared to these
techniques, our schemes achieve significant improvements. These are obtained
by starting from the field representation of the s-box and applying methods to
significantly reduce the number of nonlinear multiplications compared to the

Boolean representation of the s-box. For instance, we have shown that a DES
s-box can be computed with 10 nonlinear multiplications whereas its Boolean
representation involves several dozens of logical AND operations.

We believe that our work opens up new avenues for research in block cipher
implementations and side-channel security. In particular, the issue of designing
s-boxes with low masking complexity and good cryptographic criteria is still to
be investigated. On the other hand, our work could be extended to take into ac-
count more general definitions of the masking complexity. Indeed Definition 1 is
software oriented and hence does not encompass the hardware case. As discussed
above, the complexity of masking in hardware merely depends on the number
of nonlinear gates [10, 14], that is on the number of nonlinear multiplications
in the (n-variate) s-box representation over F2, the so-called algebraic normal
form. One may also want to minimize the number of nonlinear multiplications
in the (`-variate) s-box representation over F2k for some k (and ` = dn/ke). This
approach has actually already been followed in [15], where Kim et al. speeds up
the scheme in [27] by using the fact that the AES s-box can be processed with 5
nonlinear multiplications over F16 rather than 4 nonlinear multiplications over
F256. Although requiring an additional nonlinear multiplication, the resulting
implementation is faster since multiplications over F16 can be tabulated while
multiplications over F256 are computed based on the slower log/alog approach.
These observations motivate the following — more general — definition of the
masking complexity.

Definition 3 (Masking Complexity). Let m, n and k be three integers such
that m, k ≤ n. The masking complexity of a (n,m) s-box over F2k is the minimal
number of nonlinear multiplications required to evaluate its polynomial represen-
tation over F2k .

Here again, the masking complexity is independent of the representation of
F2k since one can go from one representation to another without any nonlinear
multiplication. The issue of finding efficient methods with respect to the masking
complexity over a smaller field F2k is left open for further researches.

7 Conclusion

In this paper we have introduced new generic higher-order masking schemes for
s-boxes with efficient software implementation. Specifically, we have extended
the Rivain and Prouff’s approach for the AES s-box to any s-box. The method
consists in masking the polynomial representation of the s-box over F2n where n
is the input dimension. As argued, the complexity of this method mainly depends
on the number of nonlinear multiplications involved in the polynomial represen-
tation (i.e. multiplications which are not squares nor scalar multiplications).
We have then introduced the masking complexity parameter for an s-box as the
minimal number of nonlinear multiplications required for its evaluation. We have
provided the exact values of this parameter for the set of power functions and
upper bounds for all s-boxes. Namely, we have presented optimal methods to

mask power functions and efficient heuristics for the general case. Eventually we
have applied our schemes to the DES s-boxes and to the PRESENT s-box and we
have provided implementation results. Our work stresses interesting open issues
for further research. Among them the design of s-boxes taking into account the
masking complexity criterion and the extension of our approach to masking over
F2k with k < n (e.g. for efficient hardware implementations) are of particular
interest.

References

1. M.-L. Akkar, N. Courtois, R. Duteuil, and L. Goubin. A Fast and Secure Imple-
mentation of Sflash. In Y. Desmedt, editor, Public Key Cryptography – PKC 2003,
volume 2567 of Lecture Notes in Computer Science, pages 267–278. Springer, 2003.

2. M.-L. Akkar and C. Giraud. An Implementation of DES and AES, Secure against
Some Attacks. In Ç. Koç, D. Naccache, and C. Paar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2001, volume 2162 of Lecture Notes in Com-
puter Science, pages 309–318. Springer, 2001.

3. G. Blakley. Safeguarding cryptographic keys. In National Comp. Conf., volume 48,
pages 313–317, New York, June 1979. AFIPS Press.

4. J. Blömer, J. G. Merchan, and V. Krummel. Provably Secure Masking of AES.
In M. Matsui and R. Zuccherato, editors, Selected Areas in Cryptography – SAC
2004, volume 3357 of Lecture Notes in Computer Science, pages 69–83. Springer,
2004.

5. A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher.
In P. Paillier and I. Verbauwhede, editors, Cryptographic Hardware and Embedded
Systems – CHES 2007, volume 4727 of Lecture Notes in Computer Science, pages
450–466. Springer, 2007.

6. E. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

7. S. Chari, C. Jutla, J. Rao, and P. Rohatgi. Towards Sound Approaches to Coun-
teract Power-Analysis Attacks. In M. Wiener, editor, Advances in Cryptology –
CRYPTO ’99, volume 1666 of Lecture Notes in Computer Science, pages 398–412.
Springer, 1999.

8. J.-S. Coron, E. Prouff, and M. Rivain. Side Channel Cryptanalysis of a Higher
Order Masking Scheme. In P. Paillier and I. Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems – CHES 2007, volume 4727 of Lecture Notes in
Computer Science, pages 28–44. Springer, 2007.

9. J. Eve. The evaluation of polynomials. Comm. ACM, 6(1):17–21, 1964.

10. S. Faust, T. Rabin, L. Reyzin, E. Tromer, and V. Vaikuntanathan. Protecting Cir-
cuits from Leakage: the Computationally-Bounded and Noisy Cases. In H. Gilbert,
editor, Advances in Cryptology – EUROCRYPT 2010, volume 6110 of Lecture
Notes in Computer Science, pages 135–156. Springer, 2010.

11. FIPS PUB 46. The Data Encryption Standard. National Bureau of Standards,
Jan. 1977.

12. L. Genelle, E. Prouff, and M. Quisquater. Thwarting Higher-Order Side Channel
Analysis with Additive and Multiplicative Maskings. In B. Preneel and T. Tak-
agi, editors, Cryptographic Hardware and Embedded Systems, 13th International
Workshop – CHES 2011, volume 6917 of Lecture Notes in Computer Science, pages
240–255. Springer, 2011.

13. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

14. Y. Ishai, A. Sahai, and D. Wagner. Private Circuits: Securing Hardware against
Probing Attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO 2003,
volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer, 2003.

15. H. Kim, S. Hong, and J. Lim. A Fast and Provably Secure Higher-Order Masking
of AES S-Box. In B. Preneel and T. Takagi, editors, Cryptographic Hardware and
Embedded Systems, 13th International Workshop – CHES 2011, volume 6917 of
Lecture Notes in Computer Science, pages 95–107. Springer, 2011.

16. D. Knuth. The Art of Computer Programming, volume 2. Addison Wesley, third
edition, 1988.

17. D. E. Knuth. Evaluation of polynomials by computers. Comm. ACM, 5(12):595–
599, 1962.

18. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In M. Wiener, editor,
Advances in Cryptology – CRYPTO ’99, volume 1666 of Lecture Notes in Computer
Science, pages 388–397. Springer, 1999.

19. S. Mangard, T. Popp, and B. M. Gammel. Side-Channel Leakage of Masked CMOS
Gates. In A. Menezes, editor, Topics in Cryptology – CT-RSA 2005, volume 3376
of Lecture Notes in Computer Science, pages 351–365. Springer, 2005.

20. S. Mangard, N. Pramstaller, and E. Oswald. Successfully Attacking Masked AES
Hardware Implementations. In J. Rao and B. Sunar, editors, Cryptographic Hard-
ware and Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Com-
puter Science, pages 157–171. Springer, 2005.

21. T. Messerges. Securing the AES Finalists against Power Analysis Attacks. In
B. Schneier, editor, Fast Software Encryption – FSE 2000, volume 1978 of Lecture
Notes in Computer Science, pages 150–164. Springer, 2000.

22. T. Messerges. Using Second-order Power Analysis to Attack DPA Resistant Soft-
ware. In Ç. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

23. S. Nikova, V. Rijmen, and M. Schläffer. Secure Hardware Implementation of Non-
linear Functions in the Presence of Glitches. In P. J. Lee and J. H. Cheon, editors,
Information Security and Cryptology – ICISC 2008, volume 5461 of Lecture Notes
in Computer Science, pages 218–234. Springer, 2008.

24. T. Popp, M. Kirschbaum, T. Zefferer, and S. Mangard. Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In P. Paillier and I. Verbauwhede, editors,
Cryptographic Hardware and Embedded Systems – CHES 2007, volume 4727 of
Lecture Notes in Computer Science, pages 81–94. Springer, 2007.

25. E. Prouff and M. Rivain. A Generic Method for Secure SBox Implementation.
In S. Kim, M. Yung, and H.-W. Lee, editors, Information Security Applications –
WISA 2007, volume 4867 of Lecture Notes in Computer Science, pages 227–244.
Springer, 2008.

26. M. Rivain, E. Dottax, and E. Prouff. Block Ciphers Implementations Provably
Secure Against Second Order Side Channel Analysis. In T. Baignères and S. Vau-
denay, editors, Fast Software Encryption – FSE 2008, Lecture Notes in Computer
Science, pages 127–143. Springer, 2008.

27. M. Rivain and E. Prouff. Provably Secure Higher-Order Masking of AES. In
S. Mangard and F.-X. Standaert, editors, Cryptographic Hardware and Embedded
Systems – CHES 2010, volume 6225 of Lecture Notes in Computer Science, pages
413–427. Springer, 2010.

28. A. Satoh, S. Morioka, K. Takano, and S. Munetoh. A Compact Rijndael Hardware
Architecture with S-Box Optimization. In E. Boyd, editor, Advances in Cryptology
– ASIACRYPT 2001, volume 2248 of Lecture Notes in Computer Science, pages
239–254. Springer, 2001.

29. K. Schramm and C. Paar. Higher Order Masking of the AES. In D. Pointcheval,
editor, Topics in Cryptology – CT-RSA 2006, volume 3860 of Lecture Notes in
Computer Science, pages 208–225. Springer, 2006.

30. A. Shamir. How to Share a Secret. Commun. ACM, 22(11):612–613, Nov. 1979.
31. J. von zur Gathen. Efficient and Optimal Exponentiation in Finite Fields. Com-

putational Complexity, 1:360–394, 1991.

A Masking Complexity of Power Functions

Table 5 summarizes the masking complexity classes (Mn
k)k for dimensions n in

the set {3, 5, 7, 9, 10, 11}.

Table 5. Cyclotomic classes for n ∈ {3, 5, 7, 9, 10, 11} w.r.t. the masking complexity k.

k Cyclotomic classes inMn
k

n = 3
0 C0 = {0}, C1 = {1, 2, 4}
1 C3 = {3, 6, 5}

n = 5
0 C0 = {0}, C1 = {1, 2, 4, 8, 16}
1 C3 = {3, 6, 12, 24, 17}, C5 = {5, 10, 20, 9, 18}
2 C7 = {7, 14, 28, 25, 19}, C11 = {11, 22, 13, 26, 21}, C15 = {15, 30, 29, 27, 23}

n = 7
0 C0 = {0}, C1 = {1, 2, 4, 8, 16, 32, 64}
1 C3 = {3, 6, 12, 24, 48, 96, 65}, C5 = {5, 10, 20, 40, 80, 33, 66},

C9 = {9, 18, 36, 72, 17, 34, 68}
2 C7 = {7, 14, 28, 56, 112, 97, 67}, C11 = {11, 22, 44, 88, 49, 98, 69},

C13 = {13, 26, 52, 104, 81, 35, 70}, C15 = {15, 30, 60, 120, 113, 99, 71},
C19 = {19, 38, 76, 25, 50, 100, 73}, C21 = {21, 42, 84, 41, 82, 37, 74},
C27 = {27, 54, 108, 89, 51, 102, 77}, C43 = {43, 86, 45, 90, 53, 106, 85}

3 C23 = {23, 46, 92, 57, 114, 101, 75}, C29 = {29, 58, 116, 105, 83, 39, 78},
C31 = {31, 62, 124, 121, 115, 103, 79}, C47 = {47, 94, 61, 122, 117, 107, 87},
C55 = {55, 110, 93, 59, 118, 109, 91}, C63 = {63, 126, 125, 123, 119, 111, 95}

n = 9
0 C0, C1

1 C3, C5, C9, C17

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C51, C73, C75, C83, C85

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61,
C63, C75, C77, C79, C87, C91, C93, C95, C103, C107, C109,

C111, C117, C119, C123, C125, C127, C171, C175, C183, C187, C219

4 C191, C223, C239

n = 10
0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37,
C41, C45, C49, C51, C69, C73, C85, C99, C147, C165

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C115,

C117, C119, C121, C123, C125, C149, C151, C155, C157, C167, C171, C173, C175, C179,
C181, C183, C187, C189, C205, C207, C213, C215, C219, C221, C231, C235, C237, C245,

C255, C341, C347, C363, C447, C495

4 C127, C159, C191, C223, C239, C247, C251, C253, C343,
C351, C367, C375, C379, C383, C439, C479, C511

n = 11
0 C0, C1

1 C3, C5, C9, C17, C33

2 C7, C11, C13, C15, C19, C21, C25, C27, C35, C37, C41, C45, C49, C51,
C67, C69, C73, C81, C85, C99, C137, C153, C163, C165, C293

3 C23, C29, C31, C39, C43, C47, C53, C55, C57, C59, C61, C63, C71, C75, C77,
C79, C83, C87, C89, C91, C93, C95, C101, C103, C105, C107, C109, C111, C113,
C115, C117, C119, C121, C123, C125, C139, C141, C143, C147, C149, C151, C155,
C157, C167, C169, C171, C173, C175, C179, C181, C185, C187, C189, C199, C201,

C203, C205, C207, C211, C213, C217, C219, C221, C229, C231, C243, C245,
C255, C295, C299, C301, C307, C309, C311,C315, C317, C331, C333, C335,
C343, C347, C359, C363, C365, C379, C411, C423, C427, C429, C339, C341,

C437, C439, C469, C495, C683, C703, C879, C887

4 C127, C159, C183, C191, C215, C223, C233, C235, C237, C239, C247, C249, C251,
C253, C303, C319, C349, C351, C367, C371, C373, C375, C381, C383,

C413, C415, C431, C443, C445, C447, C463, C471, C475, C477, C479, C491,
C493, C501, C503, C507, C509, C511, C687, C695, C699, C727, C731, C735, C751,

C759, C763, C767, C895, C959, C991, C1023

