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Abstract

This article is divided into two parts. The first part describes the known candidates of trapdoor
one-way permutations. The second part presents a new candidate trapdoor one-way permutation.

This candidate is based on properties of multivariate polynomials on finite fields, and has similar
characteristics to T. Matsumoto, H. Imai, and J. Patarin’s schemes.

What makes trapdoor one-way permutations particularly interesting is the fact that they imme-
diately provide ciphering, signature, and authentication asymmetric schemes.

Our candidate performs excellently in secret key, and secret key computations can be implemented
in low-cost smart-cards, i.e. without co-processors.

Key words : Trapdoor one-way permutations, multivariate polynomials, research of new asymmetric
bijective schemes.

Notes:
e This paper is the extended version of the paper with the same title published at ICICS’97.

e In this extended version, we have taken into account the recent results of [5].

Part 1
Known candidates

1 Introduction

Nobody can deny that the idea of trapdoor one-way permutation plays a very important role in cryp-
tography. Many theoretic schemes use this concept as an “elementary block”. Moreover, any candidate
trapdoor one-way permutation can easily be transformed into a scheme of asymmetric cryptography,
for ciphering, signature, as well as authentication.

Amagzingly enough, no widespread paper exists that describes all the known candidates at present.
As a result, many people think for example that RSA is the only explicit and available candidate
today. As we will quickly see in the first part of this paper, it is only almost true. In fact, one
can obtain many variants of RSA: by taking even exponents and a modified message space to keep
bijectivity (Rabin-Williams), by using polynomial permutations that are different from the modular
exponentiations (Dickson polynomials for instance), or by performing the computations in other groups
(such as elliptic curves). There are also much less well known candidates, very different from RSA, that
are based on public forms given by multivariate equations (the original idea was first presented by T.
Matsumoto and H. Imai).



itegers. 1his ink between the factorisation of the integers and the concept of trapdoor one-way
permutation may seem surprising. This is a strong motivation to look for other ways of designing
candidate trapdoor one-way permutations.

In this paper, we present a new example of such a candidate, that we have called D**. One of the main
interests of D** lies in the fact that secret key computations are easy to implement: they are about 100
times faster than in 512 bits-RSA, and they require about 5 times less RAM. Therefore, D** can be
implemented in a smartcard without arithmetic co-processor (on the contrary, public key computations
are supposed to be performed on a personal computer).

The security of D**, as well as the security of other algorithms of the same family, cannot be related to a
difficult problem as easily as RSA-like cryptosystems. Nevertheless, one can hope that these algorithms
show interesting ways to build new candidates, or to discover new ideas in asymmetric cryptography.

2 Trapdoor one-way permutations

Let us recall the definition of a one-way function:

Definition: Let f: A — B be a function. f is said to be one-way if:
(i) Given x € A, it is computationally easy to compute y = f(z).

(ii) Given y €; B, it is computationally hard to compute & € A such that f(z) =y.

Note: In this definition, €; means that y is “randomly” chosen in f(A), where “randomly” means
here that the probability of obtaining a value y is exactly:

{z €A, flx) =y}
|A]

Although many functions are thought to verify these two properties (they are called “candidate one-
way functions”), nobody has ever proven that one-way functions exist. Moreover, in this paper, we will
focus on a special class of them, namely the trapdoor one-way functions, which we define as follows:

Definition : Let f: A — B be a function. f is said to be trapdoor one-way if:
(i) f is a one-way function.

(ii) There is a secret information s such that, given y €; B and s, it is computationally easy to
compute z € A such that f(z) =y.

More precisely, we will only consider trapdoor one-way permutations, i.e. trapdoor one-way functions
which are also bijective.

As we mentioned above, no function has ever been proven to be a trapdoor one-way permutation. If
many “candidate one-way functions” are known, on the opposite, few candidate “trapdoor one-way
functions” are known (they give essentially all the known asymmetric cryptosystems), and very few
candidate “trapdoor one-way permutations” are known. We will now describe quickly all the candidate
trapdoor one-way permutations we are aware of.

2.1 RSA

This is the most famous trapdoor one-way permutation. It was designed by Rivest, Shamir and Adleman
in 1978 (cf [24]).
Suppose that n is the product of two large primes p and ¢, and let e be an integer. We consider the
following function:
f { Z/nZ — Z/nZ
oz

2



f 1s expected to be a trapdoor one-way permutation, whose corresponding secret information is the
factorisation n = pq.
With this secret information, it is very easy to invert f:

f~'(y) = y* mod n,
where ed = 1 mod A\(n) (d can be easily computed with Euclide’s algorithm).

Note : It is obvious that:

(i) f is a permutation.

(ii) f is a trapdoor function.

What remains unclear is whether f is one-way. It has not been proven that factoring n is computa-
tionally hard (or that finding the secret exponent d, which can be proven equivalent to factoring n, is
computationally hard). Furthermore, even if it is true, it is not clear whether we need factoring n (or
computing d) to be able to compute f!(y). These are two famous open problems.

2.2 Rabin-Williams

As we saw in the previous section, breaking RSA with modulus n has not be proven to be as difficult
as factoring n. In 1979, Rabin (cf [23]) introduced the following modification of the scheme: instead
of choosing e coprime to A(n), one can take e = 2. It can be shown that computing square roots is as
difficult as factoring n. Unfortunately, the obtained function is no longer a permutation, which may
make the decrypted messages ambiguous. One classical way to solve this problem is adding redundancy
in the cleartext.

However, in 1980, Williams (cf [27]) showed a more elegant way to eliminate this problem: p and ¢
are chosen so that p = 3 mod 8 and ¢ = 7 mod 8. We take n = pq, and a small integer s such that
(£) = —1 (where () is the Jacobi symbol). n and s are public. Let d = 1(1(p — 1)(g — 1) +1). We

n

define:
Z/nZ — Q, x {0,1} x Z/2Z
I { (22,0, mod 2) if (£) =1
T { ((sz)?,1,sz mod 2) if (F)=-1

where @, is the set of quadratic residues in Z/nZ.
This function is a trapdoor permutation and it can be proven that finding a cleartext from a random
ciphertext is as difficult as factoring.

Note: In 1985, Williams (cf [28]) extended this idea to e = 3 and Z|[w] for the message space instead
of Z (where w is a primitive cube root of unity). In this public-key scheme, computing cleartexts from
random ciphertexts is also provably as intractable as factoring n. In 1992, Loxton, Khoo, Bird and
Seberry ([10]) gave another variant, with another choice for the complete set of residues used in defining
the message space.

2.3 The Kurosawa-Itoh-Takeuchi cryptosystem

In [9], Kurosawa, Itoh and Takeuchi proposed the following trapdoor one-way permutation. Let n = pq

stands for the product of two large primes p and ¢, and let ¢ be an integer such that ( Z—‘j) = (g) =-1

(where (%) is the Legendre symbol). If D, . = {y € Z/nZ, y*> —4c € Q}} (where Q} is the set of
non-zero quadratic residues in Z/nZ), we define:

(Z/nZ)* — Dy x{0,1} x {0,1}
f:
z+— (z+ (¢/z) mod n, s, t)
where )
0 if(f) =1 P 0 if (¢/z modn) >z
L if(f) =1 1 if (¢/z mod n) < .
This function is a trapdoor permutation and it can be proven that finding a cleartext from a random
ciphertext is as difficult as factoring.



In [18], Pascal Paillier developped a new one-way trapdoor permutation over Z),. More precisely, let
n = pq stands for the product of two large primes p and ¢, let A = A(n) =lem(p — 1, — 1) and let L
be the function defined over S,, = {u < n?, v =1 mod n} by:

-1
Vu € Sy, L(u) = iy

n
If ¢ is chosen such that ged(L(¢g* mod n?), n)= 1, we define:
f { Z,—1Z,
T =11 +nxre — gl x2™ mod n?
The function f is a trapdoor permutation, and it can be proven that it is one-way if and only if

the so-called RSA[n,n| problem (i.e. extracting n-th roots modulo n, where n = pq is of unknown
factorisation) is hard.

2.5 Dickson polynomials

In [16] and [17] (see also [11]), Winfried Miiller and Rupert Nébauer developed a variant of RSA that
makes use of Dickson polynomials, instead of the ¢ monomial. This idea was generalized by Rudolph
Lidl (see [12]) and W. Miiller (see [15]). Basically, the schemes use the Dickson polynomials g5, defined
by:

5]

k k—1 ; ;
] —1)¢ Ic—21.
z'ok_i< ! >( '

T
Let n = [] p% and v(n) =lem(p* *(p? — 1), 1 < i < 7). It can be proven that g, is a permutation
i=1

gk(X) =

of Z/nZ if and only if ged(k,v(n)) = 1, and that — in that case — the inverse of gj is g;, where
kt = 1 mod v(n). From this property, it is easy to derive an analogue of RSA. Moreover, the only
known method to invert g needs the factorisation of n, so that we have another candidate trapdoor
one-way permutation based on the factoring problem.

Notes :

1. The Dickson polynomials are also known as Chebyshev polynomials of the first kind.

2. In 1993, the scheme of Miiller and Nobauer was re-invented (with minor differences) by P.J. Smith,
who called it LUC (see [25] and [26]). This cryptosystem is formulated in terms of Lucas sequences.
Some variations of LUC were also developed as (non bijective) analogies to the ElGamal scheme.
Daniel Bleichenbacher, Wieb Bosma and Arjen K. Lenstra (see [1]) showed that — because of the
deep links between Lucas sequences and exponentiation — all these variations of LUC, as well as
RSA, are vulnerable to subexponential time attacks.

2.6 The Gong-Harn cryptosystem

In [7], Gong and Harn proposed the following trapdoor one-way permutation. Let n = pgq stands for
the product of two large primes p and ¢, and let e be an integer such that

ged(e,p? — 1) = ged(e, p® — 1) = ged(e,¢® — 1) = ged(e,¢® — 1) = 1.
If @ and b are two elements of Z/nZ, we define s¢(a,b) and s_¢(a,b) by the following equation:
X3 —aX?+0X —1=(X —a)(X —a)(X —a3)
= (X —a))(X —af)(X —af) = X3 — s.(a,0) X% + 5_c(a,b) X — 1.

We then consider:

Iy {(Z/nZ)2 — (Z/nZ)?
(x1,x2) = (Se(z1,T2), S—e(T1,22)).
This function is a trapdoor permutation and it can be proven that finding a cleartext from a random
ciphertext is as difficult as factoring.



Another way to obtain analogues of RSA is to use elliptic curves over the ring Z/nZ instead of the
ring Z/nZ itself to perform the computations. For any integer n, we denote by E,(a,b) the following

elliptic curve:
E,(a,b) = {(z,y) € (Z/nZ)?*, y* = x> + az + b mod n}.

e In 1991, Kenji Koyama, Ueli M. Maurer, Tatsuaki Okamoto and Scott A. Vanstone (see [8])
proposed the following scheme: they choose two prime numbers p and ¢ such that p = ¢ = 2 mod 3,
and an integer e coprime to (p + 1)(¢ + 1). As in RSA, e, n are public, and p, ¢ are secret. Each
message is represented by an element (z,y) € (Z/nZ)?. The encryption function is defined by:

po{ @y > 2y
A (z,y) & ez, y) the calculus being performed in E, (0,y? — 23 — az).

With the secrets d, it is very easy to invert f:

13

Uy =d.(2',y) the calculus being performed in E, (0,3 — 2" — az'),

where ed = 1 mod lem(p + 1,9 + 1).

Notes :

1. A variant chooses p = ¢ = 3 mod 4 and performs the encryptions and decryptions in E, (a, 0)
instead of E,(0,b).

2. In the same way, we obtain an elliptic curve based analogue of the Rabin scheme.

As a result, this gives new candidate trapdoor one-way permutations, whose security is again
based on the difficulty of factoring n. Moreover, these schemes seem to be more secure than RSA
(or Rabin) against attacks without factoring, such as low multiplier attacks.

e In 1993, N. Demytko (see [3]) proposed another elliptic curve cryptosystem, whose security is
also based on the difficulty of factoring n = pq, where p and ¢ are secret prime integers. In this
scheme, a fixed elliptic curve E,(a,b), with gcd(4a3+27b%,n) = 1, and an integer e are chosen and
made public. Each message is represented by an element z € Z/nZ. The ciphertext ' € Z/nZ
is defined as the first coordinate of the point e.P € E,(a,b), where P is a point of the elliptic
curve E,(a,b) whose first coordinate is z. There are explicit formulas giving z' in terms of z
(and requiring neither the second coordinate of P, nor the secret parameters p and ¢), so that
the encryption function above is well defined and can be performed by anyone. Moreover, when
e is suitably chosen, an integer d can be computed with the secret parameters p and ¢, so that
the cleartext of z’ € Z/nZ is the first coordinate of d.Q) € E, (a,b), where Q) is a point of E,(a,b)
whose first coordinate is z'.

The security of these candidate trapdoor one-way permutations also relies on the difficulty of
factoring large composite numbers.

2.8 The C* scheme

In 1988, Hideki Imai and Tsutomu Matsumoto proposed a very different public key scheme, called C*
(see [14]), that is based on multivariate polynomials over a finite field. The basic idea is to represent a
message by an element 2 € K", where K = GF(2™) is a public finite field, and n is a public integer.
An integer @ such that gcd(1 +2™¢,2™" — 1) = 1, and an extension L, of degree n over K are also
public. The encryption function is defined by:
(K" — K"
f {x o t(s(z)12™)

where s : K" — L, and t : £, — K" are secret affine permutations. As f can be given by n public
polynomials in n indeterminates over K, anyone can encrypt a message. It is easy to see that f is a
trapdoor permutation. However, the C* scheme was broken in 1995 by Jacques Patarin (see [19]), and
therefore is not one-way.



no longer bijective.

2.9 ABC

The C* scheme we described in the previous section is not the only attempt of Matsumoto and Imai to
design trapdoor one-way permutations (also called ABC, for Asymmetric Bijective Cryptosystems). In
1985 (see [13]), they proposed three schemes — called A, B and C' — based on multivariate polynomials
over finite fields.

e The first one is the same as the C* scheme described in the section above.

e In the B scheme, K = GF(2) and an integer n are public. The encryption function is:

K" — K"
f {xH{t((s(azHc—l) mod (2" — 1) +1) ifz#0
0 ifz=0

n—1 .
where s : K" — Eand t: E — K" are secret linear bijections, £ = {k, 0 < k < 2"} = { > ozin}
i=0

is considered as a vector space of dimension n over K, and c¢ is a positive integer whose binary
expression has small Hamming weight. The public-key is an “and-exclusive or” array pattern
for the n-uple of n-variate sparse polynomials over K that represent f. We do not know if any
cryptanalytic work has been done against this B scheme. Its security is — as far as we know — an
open problem.

e In the C scheme, K = GF(2™) is public, and the encryption function is:

[ K'— K*
f: {wt(s(xﬁ)

where s : K* — GLy(K) and t : GLy(K) — K* are secret linear bijections, the set G Ly(K) of
2 x 2 matrices over K being considered as a vector space of dimension 4 over K. The public key
is the 4-uple of 4-variate quadratic polynomials over K that represent f. Moreover, with some
minor changes, the scheme can be made bijective. However, in [22], we have presented a way to
break this C' scheme (the idea is to use the fact that AB = BA when B = A% and A and B are
two matrices).

Part 11
Presentation of D*

In part III, we will describe a new candidate trapdoor one-way permutation. However, in order to
describe this candidate, called D**, we need first to describe a scheme, called D*. As we will see, this
scheme D* is not secure, but will be useful in part III. D* and D** have many analogies with the C*
scheme of section 2.5: the aim is to avoid the attacks and — in the same time — to keep the bijective
properties.

3 D*: a new tool

This section is devoted to the description of the D* scheme used in encryption mode.

3.1 Representation of the message

A finite field K = GF(q) is public, where ¢ = p™, m is odd, and p is a prime number such that
p = 3 mod 4 and p is not too small (for example p = 251; this point will be explained in section 3.6).
Each message M is represented by n elements of K, where n is an odd and public integer (for example
n=29).



will be useful.
Moreover, we choose the representation z of M in the following message space:
M= {x = (21, .,zn) E K™, Fk, 1<k <n, 2y € K and (Vi <k, z; = 0)}

where K' is a complete set of residues of K*/{£1}.

Notes:
1. If m=1, i.e. K=GF(p), we can choose for example K' = {z.1g, 1 <z < ’%1}
2. More generally, if (eq, ..., ey) is an arbitrary base of K over GF(p), we can choose:
: c p—1 .
K :{x:;xieiEK, Jk, 1 <k <m, (1§$k§T) and (Vi < k, mi:0)}.

3. It is easy to verify on the examples above that:

|K,|:p;1

ST AP T 1) = =

-1
M| = qT(q”_1+q”_2—|—...+q+1) =3

4. Any complete set of residues of (K™ \ {0})/{£1} can be chosen as the message space M.

3.2 Encryption of x € M
The scheme also uses:
1. An extension L, of degree n over K.

2. Two linear secret bijections s : K™ — L, and t : £, — K™. In a basis, these two linear
permutations can be written as n polynomials in n variables over K, and of total degree one.

Note: L, can be made public without reducing the security of the scheme, because changing L,, is
equivalent to making other choices for s and ¢, so that £,, can be considered as a fixed extension.

With the preceeding notations, the ciphering algorithm can be described as follows. y = F'(z) is defined
as the only element of { + ¢(s(z)?), —t(s(z)?)} that belongs to M (this element exists and is unique,
by construction of M). Since s and ¢ are of total degree one over K, t(s(x)?) can be given in a basis
by n quadratic polynomials P, ... ,P, in n variables, whose coefficients belong to K.

These polynomials are made public, so that anyone can easily encrypt a message, by using the following
equations to compute y = (y1,...,yn) = F(x) from z = (z1,...,x,) € M:

Yy = (yla ayn) eM
Yy = :tPl(J?l,...,:En)

Yn = £Py(z1, ..., Ty)

3.3 Decryption of y €¢ M

Under the hypothesis we have made (p = —1 mod 4, m odd and n odd), it is easy to prove that, for
any y € M and x € K™:

1. If t(y) is a quadratic residue in L,, then

Flx)=yots@))) =y r==2s"! ((fl(y)) qnfl)

and we can choose the sign so as to ensure 2 € M.
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¢"=—-1mod4 = (—l)qrb;1 = —1 = —1 is not a quadratic residue in £,,). As a result:

" +1

Flo)=yets@)?) =—yeor==s (-t 7 )or=ts" ((fl(y))qnf)

and the sign can also be chosen so that z € M.

Therefore, the encryption function F is a permutation from M to M, whose inverse F~! is easy to
compute for anyone who knows the secret linear permutations s and ¢: for any y € M, z = F~1(y) is
characterized by the following formula:

reM -
(G () e §
3.4 Complexity of the encryption and decryption algorithms

Encryption Obviously, using the public polynomials Py, ..., P, to encrypt a message requires < -

multiplications in K = GF(q) and < ” additions in K. Slnce the complexity of a multiplication in K
is O((log ¢)?), the encryption algorlthm has a complexity O(n*m?(logp)?).

Note: Asymptotically, the complexity of a multiplication in K = GF(q) is O(log ¢. loglog q) for very
large ¢, but for our practical values of ¢, the algorithms are in O(log? ¢), since the size of ¢ is reasonable.

Decryption The decryption function is given by the following formula:

o =57 (7 W) T).

Each linear transformation requires < n? multiplications and additions in K = GF(q).
For the exponentiation, we can use the following identity:

n—3
"+1 g+1 ~ 9
q4 :_q4 [q(q—l)§q2z+1].

If we use a normal base for £,, (i.e. a base that can be written (ﬁ,,@q,ﬁqQ, ...,ﬁqn_l) for some 8 € L),
we see that the complexity of the evaluation of the ¢*-th power of an element of £,, can be neglected
as compared to the complexity of the multiplication of two elements in L,,.

Moreover, we can use the following remark: if we write the binary representation of 252 as:

3 N
=Y 2% (B1 < B2 < ... <PBN)
v=1

we can obtain the following identity:

= 2i a 27 2.26N N 27 2(28N 42PN 1) Py 9
D= ((+(( II @+n+a") [ ("+D+q ) II @+
= IO J=Bn-2+1 J=Br—s+1
a 81
+ ) ﬁ (q2j + 1) _’_q2(2ﬁN+...+232 ) H q +1 +q (25N+,,,+2B1),
j=pf1+1 j=1
n—3

2 .
so that evaluating the . ¢%-th power of an element of £,, requires < N + By < 3logn multiplications
i=0
in £, and < 3logn evaluations of qk—th powers in L,,.



estimate the running time of their C* scheme (ct |14|, page 423).

In conclusion, the decryption algorithm requires at most 3n2(logn + log ¢) multiplications or ¢*-th
exponentiations in £,, so that the complexity of the decryption algorithm is O(3(mn)?(mlogp +

log n)(log p)?).

3.5 Complexity of solving quadratic systems in a field

To attack the cryptosystem described in this section, one of the most obvious ideas is trying to solve
the following quadratic system:

{ Pl(]?l, ,:I?n) = :|:y1

Py (x1,y ey n) = Tyn
to find the cleartext z of a given ciphertext y.
However, we have proven that — whatever the field K may be — the general problem of solving a
randomly selected system of multivariate quadratic equations over K is NP complete. This result was
already known for K = GF(2) (cf [6] page 251). Our proof of the general case is given in the appendix.

Notes:

1. In our scheme, it is not possible to choose p = 2, because P4,..., P, would be of total degree
one, and thus F' would be a simple linear transformation, and so could be very easily inverted by
gaussian reductions.

2. The problem the cryptanalyst has to cope with is a particular instance of a quadratic system over
K. Therefore, the argument above does not prove that breaking the system is a NP-complete
problem. Moreover, a classical theoretical argument of G. Brassard shows that breaking an
encryption scheme is never a NP-complete problem.

3.6 The affine multiple attack

Another attack, which is very general, was described in [20]. It can be used against schemes based on
a univariate polynomial transformation hidden by secret affine bijective transformations.

This attack is based on the following fact : if f is a univariate polynomial over a finite extension L of
a finite field K, then by using a general algorithm (see for example [2]), one can compute an “affine
multiple” of the polynomial f(a) — b, i.e. a polynomial A(a,b) € L[X,Y] such that:

1. Each solution of f(a) = b is also a solution of A(a,b) = 0.

2. A(a,b) is an affine function of @ when written in a basis over K.

In the case of the D* scheme, L = £, and f(a) = a?. It can be proven that any non-zero affine multiple
A(a,b) of f is at least of degree ’%3 with respect to b. We have taken it for granted that p is not too
small (a typical example is p = 251). With this hypothesis, the affine multiple attack does not threat
the D* scheme, because there is no practical way to compute A(a,b).

4 First cryptanalysis of D*

In this section, we prove that D* is not secure.

e The cryptanalysis is based on the following identity:

2 (.82
uv:(u—i—v) (u—v) ’
2
which is valid because the characteristic of the field K is not 2. As a result:
Fz+2')— F(z — 1)
2

Therefore, ¢(z,z") = t(s(x) - s(z')) is given by n public bilinear forms with coefficients in K.

9

= +t(s(z) - s(a)).



that:
Vz,2' € K", C(4(z,2")) = ¢(D(z),z").

This vector space is at least of dimension n, because we can choose, for any A € Ly,:

{D(x) =s"'(As(2))
Cly) =t -t~ (y))-

For simplicity, let us assume that the dimension is exactly n (we have made some simulations
that confirm this property).

Since the set of solutions for C' depends on n free variables, we can call these variables Ay, ...,
Ay, and denote by Cj the solution with parameter A = (Aq, ..., Ay).

We then compute the vector space of all linear transformations E from K™ to K™ such that:

Crw (@) = Cgg)(A).

Here again, we find a vector space of dimension at least n.

Note: This is due to the fact that, by definition, Cy () = t(8(A)-t~'(§)), where € is an unknown
linear transformation from K, to £,. Therefore, for any u € L,,, we can choose E = 0~ (u-t71),
and so obtain a solution.

Let Ey be such a solution, and let x be the operation such that, by definition:
Axg=g* A= Cgyn) (D)

Notes:

1. t and p are still unknown, but * has been found out.

2. By construction, it is easy to see that:
3 € L, p#0, VA€ K™, Vi€ K", Axg=t(n-t~"(A)-+7(3)).

We now compute, with the square-and-multiply principle (applied to the * law):

~*(%) = g X ... *g = t(/ﬁ%_l . t_l(g)%) = j:t(/j,q 4+1_1 . S(x))
2"+ times

4

As a result, a linear transformation W from K" to K™ exists, such that any cleartext/ciphertext
pair (z,y) satisfies the following equation:

*(q”+1

) =W (z).

Y

Moreover, W can be easily found by gaussian reductions on a few cleartext/ciphertext pairs.
More precisely, let (z[1],y[1]), ..., (z[k],y[k]) be k cleartext/ciphertext pairs. According to the
previous remark, there exist k elements of {—1,+1}, denoted by €1, ..., €k, such that:

Vi, 1<) <k qali] - W LlE) =o.
As a result, we have nk equations (n equations for each value of j) and n? + k unknown values
(the n? coefficients of W~ and the k variables ¢;). Moreover, if we suppose that &k > n”—_21, we

have nk > n? + k, so that the system can be solved.

10



solutions (which are opposite from each other) 1t the conditions €; = =1 (1 < 7 < k) are taken
into account. Moreover, to have a unique solution, we can suppose €; = 1 for example.

e After * and W have been found, decrypting any ciphertext is easy, since:

).

nq
(I4)

= +W(y*

5 FE* cryptosystem - Description and cryptanalysis

e We call E* the algorithm similar to D*, but with b = a? instead of b = a?, so that the encryption
function G is given by:

e As for D*, the public key consists of n polynomials in n variables over K. For E*, these polyno-
mials are cubic.

e If we choose p = 2 mod 3, m odd and n odd, then ged(3,¢® — 1) = 1, so that b = a® & a = b",
where h is the inverse of 3 modulo ¢"™ — 1. Under these asumptions, G is a trapdoor permutation
of K", and the decryption function is given by:

z=G 1y =s "t ()",

e However, we are going to prove that the permutation G is not one-way. Moreover, the cryptanal-
ysis is similar to that of D*, and is based on the following identity:
(u+v+w?+w—v—w?—(u—v+w)?—(ut+v—w)?

UVW = 2 ,

which is valid as soon as the characteristic of K is greater than 3. Thus:

Gx+2+2")+Gx—2' —2") -Gz — 2"+ 2") — Gz + ' — 2")

24 = t(s(x) - s(a') - s(z")).

Therefore, 1(x,2',z") = t(s(x) - s(z") - s(z")) is given by n public cubic forms with coefficients in
K.

A x law can then be derived exactly as in section 4 — by writing s(x)-s(z')-s(z") as s(z)-[s(z')-s(z")]
— and finally, with a few cleartext/ciphertext pairs, any message can be easily decrypted.

6 Cryptanalysis of more general polynomial transformations

The algorithm used for the first cryptanalysis of D* (i.e. with the polynomial f(X) = X?), or for E*
(i.e. with the polynomial f(X) = X?3), can also be extended to any polynomial transformation f(X)
as long as the degree D of f is less than the characterisctic p of the field K.

Note: Moreover, when the degree D of the hidden polynomial f is smaller than p, then this degree
D should be very small because it will also be the total degree of the public equations and the size of
the public key must be reasonable.

D B
So, let us assume D < p, and let f(X) = > «; X". The cryptanalysis is as follows:
i=1

Step 1: When the polarisation is done with more than D variables, we will have 0, and when it is
done with less than D variables, we will not find 0. So the value D is easy to find by a few polarisations.

Step 2: Moreover, the polarisation with exactly D variables depends only on the monomial oy Xy
(all the other monomials give 0), so from this polarisation, we will find a * law (we find a * law on d
variables, and this gives of course also a * law on 2 variables: X % (X} * ... x X])).

11



L/

f1(X) = E B; X; such that the public equations come from f'.
]

Step 4: Finally, a cleartext can be found from a ciphertext without knowing the secret affine functions
s and t: we will just use f’ and the x law instead of f and the standard multiplication.

Remark: In the HFE schemes of [20] (with public polynomials of degree 2), the degree D of the
hidden polynomial f is always larger than p because we want not only the monomials x and z2 in f,
so we must have at least one 29 77 with ¢ + ¢/ > p. So it seems that this “polarisation attack” does
not work against the HFE schemes.

7 Another cryptanalysis of D*

A few months after our first cryptanalysis (given in section 4), Nicolas Courtois found a very different
cryptanalysis of D*. We explain his cryptanalysis below.

Step 1: In the description of the D* scheme, s : K™ — L,, is a linear and bijective application. Let
us replace by 2’ = o~ !(z) in the public equations of D*, where o : K™ + K" is an affine bijection,
which is not linear. We obtain a new set of n public polynomials Q1, ..., @, of total degree two in z},
vy Ty

The first step of this attack consists in writing the affine applications s o o and ¢~! as follows:

a=soo(z') = So-i-Z:L“Sz,

=1

n

b=t"(y) =Y T

i=1
where Sy, Si, ..., S, and Ty, ..., T;, are elements of £,. Since s and ¢ are bijective, (S;)i1<i<, and
(T;)1<i<n are two bases of L,. Moreover, since o is not linear, we have Sy # 0, and we can even
suppose that Sy = 1 (because for any A € L, \ {0}, we can change (s,t) into (5 - s, A? - t) and obtain
the same cryptosystem.)
The D* cryptosystem can thus be rewritten as follows:

n 9 n
(1 + Z ZE;Sl) = Zlez
=1 =1

Step 2: In the previous equation, if we replace each y; by its public expression Q;(z}, ..., z}), we
obtain an equation of total degree two in the z} variables, which holds for any z:

1+2Zx5 +Zx’252+2 oz

1<i#j<n

2:: Z (Zﬁzy )+Z$'2(Z%J ) Z wéw}(é%m),

= 1<i#j<n

where the coefficients o, 3;, ¥ij, d;jx are known elements of K.
If we successively take z = (0,...,0), z = (1,0,...,0), = = (0,1,0,...,0), ..., z = (0,...,0,1), z =
(2,0,..,0), = = (0,2,0,..,0), ..., z = (0,...,0,2), z = (1,1,0,...,0), = (1,0,1,0,...,0), ..., z =

12



1= zl o T (1)
25, - gi; BiT; (1<i<n) 2)
S = _]fj%jTj (1<i<n) (3)
\ QSZSjJ_ S OgTi (1<ij<n) (4

Step 3:  Gaussian reductions on the equations (2) give the T; as linear combinations of the S; (the
inversion is certainly possible, because (S;)1<i<n is a basis of L,):

n
Vi, 1<i<n, Ty;=> 055;. (x)
7j=1

In the same way, we also have, from (1) and (*):
n
1= Z ©;S;. (%)
j=1

Step 4: By using the equations (%) in (3) and (4), we obtain a “multiplication table” for the S;:
n
Si-Sj=> viipSk  (1<i,j<n).
k=1

The complexity of this first part of the attack is O(n?®) (due to the gaussian reductions used in step 3
to obtain the 7; as linear combinations of the S;).

Step 5:  With the “multiplication table” above, it is possible to find a cleartext z = (x1, ..., z,) from
a given ciphertext y = (y1, ..., yn), as follows. By definition,

soo(a) = +(t7'(y)" T
if we let 2’ = o~!(z). With the notations of this section, this gives:

n n
1+ ;S = i(zszz)
i=1 i=1

" +1
1

By using (%), we obtain:
" +1

n n
1 + Z(II;SZ = i(znjsj) ¢
i=1 j=1

Then, by using the “square and multiply” principle, together with the “multiplication table” of Step
5, and equation (x*), we obtain:

n n
Yo @S =Y S,
i=1 =1

where the 9); are known coeflicients of K (there are two possibilities for the 1);, because of the & above).
Since (Si)i<i<n is a basis of L,, we deduce: (2,...,2;,) = (¢¥1,...,¢,). Finally, for each of the two
solutions z’, we compute x = o(z') (o is known), and the cleartext is the solution z that satisfies

r € M.

8 How to find s and ¢ in the D* cryptosystem ?

Following his attack of section 7, Nicolas Courtois has also found how to find the secret linear bijections
s and t. We describe his method below. The notations are the same as in section 7.
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of the (cyclic) multiplicative group of the algebraic extension £,,. Actually, there are ¢(¢" — 1) such
generators, so that the probability of finding one is:

p(g" — 1) 1 1
—_— = 1—=)> 1——).
According to Mertens’ formula, we have:

1 e
pgv (1 B 5) - log N’

where 7 is Euler’s constant. Therefore, we can obtain a generator in O(nlogq) tries in average.

Step 2: With the notations above, we can write:

n
a=1+ Z z,S;
i=1
where 2’ = 07! (z).
By using (%), the “square and multiply” principle, and the “multiplication table” of section 7, we can
write:

n
a* =" CiSi (0 <k <n),
i=1

where the (;; are known coefficients of K that can be computed in polynomial time.

Step 3: Since £, is a vector space of dimension n over K, the vectors 1, a, a?, ..., a™ are linked, i.e.
we can find coefficients &, ..., £, of K such that:
n
Z gkak =0,
k=0
n
ie. ®(a) =0, where ®(X) = 3 &XF is a polynomial of degree n with coefficients in K.
k=0

Step 4:  We then compute all the roots of ® in £,,. For example, with the Berlekamp-Rabin algorithm,
they can be found in O(n3lognlogq) in average. We obtain at most n roots. It remains to find which
one is the correct value of a = s(z).

Step 5: Let ag be one of the roots found in Step 4. We can notice that the elements 1, ay, ..., agfl
of L, are linearly independent over K. Actually, if they were not, there would be a polynomial II of
degree < n — 1 such that II(ap) = 0. The group generated by ag in £,, would therefore be contained in
the set:

{p(ao), p € K[X]\ {0}, d°p <n —2},

whose cardinality is ¢ —1 < g™ —1. As a result, ag could not be a generator of the multiplicative
group of L,, a contradiction.
We thus obtain a system of n linearly independent equations on S, ..., Sy:

n—1

Vk, 0<k<n—1, Y (uSi=ag.
=1

This system has a unique solution (51, ..., Sp).
When S is known, T' can be deduced with equations (%), and we can check if those S and T are correct.

We can repeat Step 5 with each root of ®, until we find the correct one: that gives an algorithm in
O(n*lognlogq) to find S and T.
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that ®(a) = 0 (by considering other powers of a in Step 3) and computing ged(®, @), whose degree is
low with a high probability. The computation of the correct value of a is then likely to be much easier
(we can expect the degree of ged(®, @) to be one with a rather high probability).

Part 111
Our new candidate

9 The D** algorithm

As we saw in the previous part, an encryption scheme based on the use of a monomial transformation
of small degree (more precisely, of smaller degree than the characteristic of the field K) is insecure.
A natural idea is then to design a cryptosystem that uses two rounds of D*-like transformations.

9.1 Representation of the message

We choose the same field K and the same message space M as in the description of D* (see section 3).

9.2 Encryption of x € M

The scheme also makes use of an extension £, of degree n over K (which can be fixed, as we mentioned
before), and three linear secret bijections s : K™ — L, t : L, — L, and u : £,, — K™ (each of them
can be given by n polynomials in n variables over K, and of total degree one).

With these notations, the ciphering algorithm can be described as follows. y = H(z) is defined as the
only element of { + u(t(s(z)?)?), —u(t(s(x)?)?)} that belongs to M (this element exists and is unique,
by construction of M). Since s, t and u are of total degree one over K, u(t(s(x)?)?) can be given in a
basis by n polynomials P, ..., P, of total degree 4 in n variables, whose coefficients belong to K.
These polynomials are made public, so that anyone can easily encrypt a message, by using the following
equations to compute y = (y1,...,yn) = H(z) from = = (21, ..., z,) € M:

y= (Y1, Yn) € M
Y1 = :|:P1(:E1,...,(L‘n)

Yn = TPy (z1, ..y Ty)

9.3 Decryption of y € M

As for D*, H is a permutation from M to M, and the decryption of y € M is also very easy, when the
secret linear permutations s, ¢ and u are known. For any y € M, x = H !(y) is given by the following

formula:
reM
{x =5 (7 ()

g1 g1
4 )

) 1

10 Complexity of functional decomposition

In this section, we consider a natural attack on the D** scheme. This attack consists in trying to
“separate” the two rounds of D**. This leads to the following problem:

Decomposition problem: Let g and h be two functions which map K™ into K™ and which are given
by polynomials of total degree two in n variables over K. Then f = g o h is also a function from K"
to K™, and it is given by n polynomials of degree four in n variables over K. Suppose that f is given.
Is it computationally feasible to recover g and h 7
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from each other. As a result, to break the scheme, we would only have to break two independent D™
schemes, and that is feasible as we saw in section 4.

That would of course make the general idea of using two rounds uninteresting. However, the decompo-
sition of multivariate polynomials was studied by Matthew Dickerson, who gave an algorithm for the
following problem:

Multivariate left decomposition: Given polynomials f and hi,...,h, in K[Xq,...,X,], and an
integer 7, decide if there exists a polynomial g(x1, ..., x,) of total degree at most r that composes with
the h;’s to give f. That is, does there exist a polynomial g(z1, ..., Z,) such that

flx1,yzn) = glhi (21, ooy Tn),y ooy An (T, oy )
and deg(g)< r 7 If so, determine the coefficients of g.

In [4], Dickerson presents the best-known algorithm for this problem, which is polynomial in the degree
of f,h1,..., hy, but exponential in the number n of variables (note that our decomposition problem is
even harder, because the h;’s are not known).

He also shows that the general problem of decomposition of multivariate polynomials is difficult, because
the following one is NP-hard:

s-1-decomposition problem: Given a monic univariate polynomial f(z) and an integer s, decide if
there exists an s-1-decomposition of f, i.e. a monic univariate polynomial h of degree s, and a bivariate
polynomial g(y,z) € K[Y, X] of the form g(y,z) = [T'—,(y + a;z + B;) with oy, 8; € K, an algebraic
extension of K, such that f(z) = g(h(z),z). If so, determine the coefficients of g and h.

There are some reasons to think that the following problem is also NP-hard (cf [4], problem 14, p. 74):

Multivariate decomposition of given degree: Given a polynomial f in K[Xj,..., X,] and some
subset of the following: integers k,r, s1,..., Sk, a polynomial g(z1,...,zx)€ K[X, ..., Xk, and polyno-
mials Ay (z1,..,2pn),.y hg(21,...,2,), decide if there exists a functional decomposition g, hq, ..., by of f
such that degg = r, and degh; = s; for 1 < ¢ < n. If so, compute those coefficients of g and the h;’s
which were not given.

Dickerson (see [4], p. 75) notices that: “The s-1-decomposition problem seems intuitively easier than
problem 14. In problem 14, f, g and h are general multivariate polynomials of arbitrary dimension.
Furthermore polynomial g takes the polynomial h; as arguments, and we know nothing about the form
of g other than its degree. In the s-1-decomposition problem, on the other hand, f and h are both
univariate polynomials and ¢ is only bivariate. Furthermore, g takes z and not another polynomial
as its second argument. We also know a great deal about the structure of the polynomial g, namely
that it factors as: ¢(y,z) = [[;j=;(y + a;z + ;). However, we have tried without success to reduce the
s-1-decomposition problem to problem 14.”

Therefore, it is still an open problem... and — at the present — it does not lead to any practical attack
on D**.

11 Comparison with RSA in secret key computations

The aim of this section is to compare the speed of a realistic implementation of D** with the speed of
the standard 512 bits RSA cryptosystem.

We take p = ¢ = 251, and n = 9, so that each message is about 72 bits large. By a careful study
of the exponentiation b — bq4—+l, it can be proved that D** — in this example — requires less than 50
multiplications over £, in secret key computations.

We can therefore summarize the complexity of secret key computations as follows:

< 50 multiplications 72 bits x 72 bits for D**
~ 768 multiplications 512 bits x 512 bits for RSA.

As a result, the secret key computations in D** are expected to be at least 100 times faster than those
of RSA.

16



The D** algorithm is built with two rounds of D* algorithms. We can also design a variation of this
D** scheme, called T'D*, where the first round will be a “triangular” or “mixed triangular/D*” scheme,
and where the second round is still a D*. By “triangular”, we mean a transformation 7" of the following
type:

T(ay,...,an) = (ai,a3 + q2(a1), a3 + gs(ar, a2), . .., ap + gular, ... ,an_1)),

where g9, ..., g, are homogeneous polynomials of total degree two.

By “mixed triangular/D*” scheme, we mean a transformation f such that f(A||B) = D*(A)||T(B) +
P(A), where || is the concatenation function, where T' is a “triangular” scheme, and where P is a
homogeneous polynomial of total degree two. These T'D* schemes are also candidate trapdoor one-way
permutations.

Note: The “triangular” or "mixed triangular/D*” function must be in the first round. If the two
rounds are put the other way round, the scheme can easily be broken.

13 Attacks agains 2R schemes

In 1999, in [5],an algorithm that is often able to find the decomposition of two quadratic multivariate
polynomials has been published. This algorithm is expected to break the 2R schemes (among them
D**) when all the composition is given in the public key. In order to repair the 2R schemes (for example
D**), we can suggest:

e To not publish all the originally public equations (it gives a 2R~ scheme).

e Or to introduce a “perturbation” on these equations, for example by introducing some extra
variables (it gives a 2RV scheme), by fixing some variables (ir gives a 2RF scheme), or by mixing
the equations cith truly random equations (it gives a 2R* scheme). Moreover, all these “pertur-
bations” can be combined (it gives a 2RT~VF scheme). See [22] for more details (in [22], these
“perturbations” are used and studied on the C* scheme).

Note: When these perturbations are done on D** or T'D*, no attacks are known against the resulting
schemes (D**~, D*** D**V ; D**F, etc). However, unlike D** or T'D*, these schemes are not bijective

anymore...

14 Conclusion

From any trapdoor one-way permutation, it is easy to build asymmetric schemes for ciphering, signature,
or authentication. However, very few candidate trapdoor one-way permutations are known at the
present. Therefore, we think that all the candidates should be studied carefully, and that one should
go on looking for new candidates.

In this paper, we have quickly described all the know candidates we are aware of. They can be split
into two families: the “RSA-like” family and the “multivariate polynomial” family. The “RSA-like”
family contains all the schemes that can be seen as generalizations of the RSA scheme (Rabin-Williams,
Dickson, Elliptic curves analogues of RSA). In the “multivariate polynomial” family, the public key is
given as a set of multivariate polynomials. The original C* scheme of T. Matsumoto and H. Imai was
a typical example of this family, but it is known to be insecure. However, it is possible to design some
other schemes in this family, such as the B scheme [13], or such as the new schemes D** and T D*
described in this paper.

Of course, the candidates of the “RSA-like” family look more “serious” than others. No candidates are
known with an absolute proof of security, but the security of these candidates is related to a famous
open problem, such as factoring, or computing e-th roots modulo n, whereas the security of the other
candidates is just an open problem, not related to a famous problem.
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published 1 |o|. However, 1t 1s very easy to repair the schemes, 1.e. to avoid the cryptanalysis of |9|,
for example by not publishing all the originally public equations. The resulting schemes, called 2R™,
are not broken (but they are not bijective anymore...). For example for D**~ or T'D*", no efficient
attacks are known, and we keep the property that secret key computations are very easy. Secret key
computations of D**~ or TD*~ are more than 100 times faster than RSA and they can be performed
in low-cost smartcards (i.e. without co-processors). We hope that this paper will support the arising
of new ideas in asymmetric cryptography.
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Solving a system of quadratic equations over any field is NP-complete

It is known that solving a randomly selected system of multivariate quadratic equations over the field
K = GF(2) is an NP-complete problem (see [6] page 251). In this appendix, we show that this is still
the case when K is any field. Moreover, as concerns the case K = GF(2), Garey and Johnson refer to
a paper that was never published, so that we give a proof for this case too.

1. The case K = GF(2)

Let us consider an instance of the 3-Satisfiability problem (also called 3-SAT), given by a finite set
U = {uy,...,un} of Boolean variables, and a collection C = {c, ..., ¢} of clauses on X. By definition,
each clause is a disjonction of at most three litterals over U (a litteral is some u or some @, with u € U).
Each Boolean variable can be considered in an obvious way as an element of GF'(2). Moreover:

e If u € U corresponds to z € GF(2), then u correponds to 1 — z.

o If u € U (resp. v € U) corresponds to z € GF(2) (resp. y € GF(2)), then (u or v) corresponds
to (zy + 2z +y) in GF(2).

Therefore, finding a truth assigment for U that satisfies all the clauses in C' is equivalent to solving some

system of m cubic equations in n indeterminates over GF(2). Moreover, each equation of this system

contains at most three of the z; indeterminates. If we add the % new variables z;; = z;z; (i < j),

the system can be rewritten into a system of m + % quadratic equations in %

over GF(2).

indeterminates

Conclusion The problem of solving a randomly selected instance of the 3-SAT problem — which is
NP-complete — can be reduced in polynomial time to the problem of solving a system of randomly
selected multivariate quadratic equations over the GF(2). As a result, this latter problem is also
NP-complete.

2. The general case

Let K be any field, and let S be the following system of n quadratic equations in n indeterminates
over GF(2) :

n
> kT + Y vikTi = Yk (1<k<n),
1<i<j<n i=1

where the y; are fixed elements of GF'(2). We are going to show that the problem of solving the system
S can be reduced — in polynomial time — to the problem of solving some system of quadratic equations
over K.

Transformation of the system Over GF(2), solving (S) is equivalent to solving the following

system:

(1262122 = Z12k 1<k<
P13kT183 = Z12k + 213k (1<k<n)

H(n—1)nkTn-1Tn = Z(n—2)nk t Z(n—1)nk (1<k<n)

(8') S VikT1 = Z(n-1)nk + Wik (1<k<n)
VakTy = Wik + Wy (1<k<n)
V(n—1)kTn—1 = Wn_2)k T Wn_1)k (1<k<n)

( VnkTn = Wn_1)k + Yk (1<k<n)
n?(n+1) n?(n+1)

It is a system of —5— equations over GF(2), with — 5~ indeterminates: the z; (1 < i < n), the
zijk (1<i<j<n,1<k<n),andthewy (1<i<n—-1,1<k<n).
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(where 0 denotes the i1dentity element of the addition law of K, et 1 denotes the identity element of
the multiplication law of K') such that z(x — 1) = 0. The multiplication law (z,y) — zy of GF(2) can
be translated into (x,y) — xy over K, whereas one can translate the addition law (z,y) — x + y of
GF(2) into (z,y) — (x +y)(2 — (z + y)) over K (where 2 denotes the element 1 + 1 of K).

As a result, solving (S') over GF(2) is equivalent to solving the following system over K:

P12k T1T2 = 212k (1<k<n)
P13 = (2126 + 213k) (2 — 212k — Z13%) (1<k<n)
H(n—1)nkTn—1Tn = (Z(n—2)nk + Z(n—l)nk)(2 — Z(n—2)nk — Z(n—l)nk) (1<k<n)
VigT1 = (Z(n—1)nk + W1k)(2 = Z(n—1)nk — Wik) (1<k<n)
(57 vk = (wik + wor) (2 — w1 — wox) (1<k<n)
Vin-1)kTn—1 = (Wn-2)k + Wn-1)k)(2 = Wn-2)k — Wr-1)k) (1<k<n)
VnkZTn = (Wn-1)k + Yk) (2 — Wn_1)k — Yk) (1<k<n)
zi(z;i—1) =0 (1<i<n)
zijk(zijk—l):() (1§i<j§n,1§k§n)
L wig (wi, — 1) =0 (1<i<n—-1,1<k<n)

2
% indeterminates over K.

It is a system of n?(n + 1) quadratic equations with ~
Conclusion The problem of solving a randomly selected system of multivariate quadratic equations
over GF(2) — which is NP-complete — can be reduced in polynomial time to the problem of solving a
system of randomly selected multivariate quadratic equations over the field K. Therefore, this latter
problem is also NP-complete. Note that K can even be a division ring, because the proof does not use
the commutativity of the multiplication law in K.
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