Guess-and-determine Algebraic Attack
on the Self-Shrinking Generator

17

Blandine Debraize!? and Louis Goubin?

! Gemalto, Meudon, France
2 University of Versailles, France

Abstract. The self-shrinking Generator (SSG) was proposed by Meier and Staffelbach at
Eurocrypt’94. Two similar guess-and-determine attacks were independently proposed by Hell-
Johansson and Zhang-Feng in 2006, and give the best time/data tradeoff on this cipher so far.
These attacks do not depend on the Hamming weight of the feedback polynomial (defining the
LFSR in SSG).

In this paper we propose a new attack strategy against SSG, when the Hamming weight is at
most 5.

For this case we obtain a better tradeoff than all previously known attacks (including Hell-
Johansson and Zhang-Feng). Our main idea consists in guessing some information about the
internal bitstream of the SSG, and expressing this information by a system of polynomial equa-
tions on the still unknown key bits. From a practical point of view, we show that using a SAT
solver, such as MiniSAT, is the best way of solving this polynomial system.

Since Meier and Staffelbach original paper, avoiding low Hamming weight feedback polynomials
has been a widely believed principle. However this rule did not materialize in previous recent
attacks. With the new attacks described in this paper, we show explicitly that this principle
remains true.

Key Words: stream cipher, guess-and-determine attacks, multivariate quadratic equations,
SAT solver, self-shrinking generator, algebraic cryptanalysis.

1 Introduction

The self-shrinking generator (SSG) was proposed by W. Meier and O. Staffelbach at Euro-
crypt’94 in [9]. It is a variant of the original Shrinking Generator proposed by Coppersmith,
Krawczyk and Mansour in [7,8]. In their paper, they proposed an attack of time complexity
O(207), and O(2%%9") when the Hamming weight of the feedback polynomial is 3. In [12],
Mihaljevié proposes a cryptanalysis with minimal time complexity O(2°°"), with data com-
plexity O(n2%5"). The amount of keystream is not realistic for large values of the key size n.
An attack on SSG requiring very few keystream data (2.41n) is the BBD cryptanalysis pro-
posed in [10] with time complexity n®(1)20-656n
tradeoff between time, memory and data complexity today is the Hell and Johansson guess-
and-determine cryptanalysis of [13]. A very similar attack has been independently proposed
by Zhang and Feng in [11]. For instance the time complexity of this latter attack varies from
0O(2°57) to O(n320-6%61) and data complexity ranges from O(n2%°") to O(n) accordingly. For
example with a reasonable amount of keystream of O(2°-161) it is possible with this attack
to recover the key in time O(n32°%56"). The complexity of this attack is independent from
the Hamming weight of the feedback polynomial.

and equivalent memory complexity. The best

2 Blandine Debraize and Louis Goubin

In this paper we show that a low Hamming weight for the feedback polynomial defining the
LFSR makes the self-shrinking generator even more vulnerable against guess-and-determine
attacks. To show this we propose a new type of guess-and-determine attack. We guess some
information and then write a system of polynomial equations over GF(2) that we solve by
using the SAT solver algorithm MiniSAT. We describe a large family of attacks. Thus as
the Hell-Johansson and Zhang-Feng attacks, we can handle with different conditions of at-
tack and data requirements. Our simulations show that for small Hamming weight feedback
polynomial, the complexity of our time/data tradeoff is noticeably better.

In Section 2, we briefly describe SAT solvers, the design of the SSG and the principle of
our attack. In Section 3 we analyse previous work on this cipher. In Section 4, we describe
a special case of our new attack, and in Section 5, we generalize the principle to a family of
attacks. Finally in Section 6, we look for the best time/data tradeoff cryptanalysis.

2 Preliminaries

2.1 Sat Solvers

In cryptography the use of SAT solvers to solve polynomial systems over GF(2) has been
recently introduced by Bard, Courtois and Jefferson in [1]. The method consists in converting
the multivariate system into a conjunctive normal form satisfiability (CNF-SAT) problem,
and then applying a SAT solver algorithm. It has been used in [3] to cryptanalyse the block
cipher Keeloq and in [2] to analyse the reduced version Bivium of the stream cipher Trivium.

The other well-known methods to solve algebraic systems of equations over GF(2) are
XL ([4]) and Grobner bases algorithms like F4 and F5 ([5, 6]). Both are linear algebra based
methods, their drawback is that they need to store big matrices during the computations and
then require a huge amount of memory. Moreover it is unclear how much the sparsity of the
initial system helps to reduce the running time of the solving.

SAT solvers behave in a completely different way. Most of them try to find more directly
a solution to the system by recursively choosing a variable, first trying to assign it a value
and then the other. The important parameters for SAT solvers are the number of clauses,
the total length of all the clauses, and the number of variables.

In this paper we used the conversion from algebraic normal form to conjunctive normal
form method described in [1], and the SAT solver MiniSAT also proposed in [1]. This conver-
sion method transforms linear equations in long CNF expressions made of long clauses. That
is why the method works much better if the linear expressions are short, and, more generally,
if the systems are sparse.

2.2 Trade-off between Guessing and Exploiting Information

In this Section, we specifically consider the case of stream ciphers based on one Linear Feed-
back Shift Register (LFSR), since the self-shrinking generator belongs to this category. How-
ever, the notions defined below can be extended to stream ciphers based on several LFSRs.

Let us suppose the state of the LFSR has length n. At each clock ¢, the LFSR outputs a
bit s;. The bits sqg,--- ,s,_1 are the bits of the initial state of the LFSR. Here we consider
that the initial state of the LFSR is the n-bits key of the cipher.

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 3
Definition 1. We call internal sequence at clock t the sequence of bits St = sgsj...5

Definition 2. The compression function is the function C' such that at each clock t the
keystream generator produces one keystream bit C(S?). The output sequence of the generator
s then :

C(SY)C(SY) -+ (S

Definition 3. The information rate (per bit), which a keystream reveals about the first m bits
of the underlying internal bitstream, is denoted by a(m), and defined by a(m) = %I(Z(m), Y),
where Z(™) denotes a random z € {0,1}™ and Y a random keystream.

Then a(m) can be computed as:

1 1
a(m) = — (H(Z<m>) - H(z<m>|Y)) —1- ~H(ZM|Y)
m m
We prove in appendix A that the information rate is constant for the self-shrinking gen-
erator and that its value is i.

The compression ratio n(m) is the average number of output bits which C' produces on
1

internal sequences of length m. Here the compression ratio is also a constant and n = a = ;.

For a stream cipher based on one LFSR with a constant information rate and a constant
compression ratio, there is always a better attack than exhaustive search, by exploiting the
leakage of information given by the keystream. For m keystream bits, this leakage is an
amount of am/n bits of information. The entropy of the guess to recover the m/n first
internal sequence bits is then H(Z(™|Y) = (1—) 7. Recovering the n key bits requires then
a complexity O(201=%)"). This attack has been described in [9] and is explained in Section
3.1. One way to improve this attack is to decrease the amount of information we guess. In
this case we cannot recover directly all the consecutive bits of the initial state of the LFSR,
but only part of them. If we guess an amount of information A on the internal sequence per
keystream bit, what we obtain is an amount of h+ «/n per keystream bit. The ratio “guessed
information” / “total information known per keystream” bit is then

h
h +

o
n
where ¢ is a constant (here equal to 1). Therefore the smaller h gets, the smaller this ratio
becomes. This means that when h decreases, the amount of “guessed information” staying
the same, the obtained “total information” increases.

Decreasing the amount of information on the internal sequence we guess per keystream
bit seems then to be a good strategy. It is the adopted strategy thoughout this paper. The
greatest issue is following: once we have obtained enough information, how to exploit it to
recover the key. This will be discussed in detail in this paper for the case of the self-shrinking
generator.

4 Blandine Debraize and Louis Goubin

2.3 Description of the Self-Shrinking Generator

The self-shrinking generator consists in one LFSR, and a shrinking component that uses
a compression function C. Let K = (Ko, --,K,_1) be a secret key, and let s° = K be
the initial state of the LFSR. At each clock t = 0,1,2,---, the new state s’ is computed
as s = L(s'"™1), with L being the multivariate linear transformation corresponding to the
connection polynomial of the LFSR. Therefore s = L'(Ky, - -+ , K;,—1), and every bit st of the
state at time ¢ can be written as a known linear combination of the key bits Kq, -, K,_1.

Now we define the shrinking function. Let f be a function defined as follows :
f:4{0,1}* — {0,1,¢}

such that f(a,b) = bif a = 1, and f(a,b) = € (the empty word) if @ = 0. This shrinking
function can be extended to compress sequences of bits of arbitrary length as follows. Let
Zo 21 -+ - zr—1 be a bitstream of length r generated by the LESR. The output keystream of the
SSG generator will be C(zg z1 - - - 2,—1), which is defined as f(zo, 21) f(22,23) -+ f(2r—2,2r—1)
with the computation being done in the free monoid {0,1}* (which means that we simply
concatenate these strings of bits). The resulting compressed sequence C(zpzj---2,—1) has
length at most [5]. This length is hard to predict and depends on the number of pairs of
consecutive bits such that f(z;,zi41) = ¢ (i.e. z; = 0 and no bit is output).

3 Previous Work and Known attacks

3.1 The Meier and Staffelbach Attack

The attack described in [9] is the attack we refereed to in Section 2.2. It consists in guessing
all the consecutive bits of the internal sequence s that are not revealed by the keystream. As
odd bits and even bits have not the same role, we guess them by pairs. The probability for
the first pair to be 00 is %, its probability to be 01 is %, and its probability to be 1le where e
is the corresponding keystream bit is % The same holds for the next pairs. The entropy of
the information that has to be guessed by pair is:

1 1 1 1 3
H=—Zlog(5) =2 7log(7) =5

The mean number of pairs corresponding to m keystream bits is 2m. Then the entropy of the
information guessed per keystream bit is 3. If we guess it for m ones, the average number of
trials to get the right value is 23™ and the information we know has an entropy 4m. Then m
must be about %, and the complexity of the attack is 2%", as announced in Section 2.2.

There are two ways of improving this attack. The first one consists in reducing the amount
of information we guess, as we describe in Section 3.2. The second one consists in looking for
the best case through the keystream, as we briefly describe in Section 3.3.

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 5

3.2 Improvement

It is easy to improve this attack by decreasing the amount of information we guess. The
known method we explain here is can be found in [13]. Each bit z; of the pseudo-random
sequence corresponds to two consecutive bits 1 and z; in the internal sequence s. Then it
is possible, instead of guessing the values of all the bits of the internal sequence, to guess
only the values of the subsequence s’ made of the even bits of s (xq,,x2, -, T,). It is
equivalent to guessing the position of the pairs (1,z;) in s. We show now that this decreases
the amount of information we guess per bit. Let us suppose that zg = 1. The probability for
the number of “0” to be k before the next “1” in s’ is Qk% Consequently the entropy for this

j 1

Let us suppose we get a sequence of m bits of keystream. The entropy for guessing the values
of the corresponding internal sequence s’ (bits in even positions) is then 2m. Therefore we can
guess all these values with an average about 22™ guesses. We have seen that the i-th bit of the
keystream is equal to the odd bit following the i-th even “1” of s. Once we get the positions of
the “1”s in the internal bitstream, we know the values and positions of 2m +m = 3m bits on
average. Therefore m must be about 7, assuming there is no redundancy in the information.

How to exploit this information? Here it is very simple, as each internal sequence bit can
be expressed as a linear expression of the key bits. We have then obtained a system of linear
equations. The non-redundancy of the information obtained by our guess is expressed by the
consistency of this linear system.

We observe that in this attack the ratio “information guessed”/“information obtained”
is 5.

3.3 Mihaljevi¢ Attack

This attack is described in [12]. Let us consider again the subsequence s’ of the internal
bitstream made of the even bits. When we know that § consecutive bits of s are “1”s,
we know m consecutive bits of s. The attack consists in looking for this case through the
keystream. To each keystream subsequence of 7 bits corresponds an n-bit internal bitstream
sequence. If by running the stream cipher on this sequence we do not obtain right values for
the keystream, we try on the following 5 bits sequence of keystream, etc.

Of course the drawback of this attack is the huge amount of necessary keystream bits:
about % - 23 . That is why [12] describes a family of attacks with time complexity varying

from O(22) (this attack) to (9(3J) (the attack of Section 3.1), and the required keystream
length ranging from 2% to 21 accordingly.

The other tradeoff between the attack allowing the best complexity estimation and the
attack described at Section 3.2 is studied in [11] and [13]. The attack strategy is the same in
both papers, but in [13], an improvement is proposed when the available keystream is very
short (less than 2995, As our final attack will only focus on larger keystream amounts, we
will only take into account the common part of [11] and [13] in this paper. We will briefly
describe it in Section 6.

6 Blandine Debraize and Louis Goubin

We have seen in this Section that from the attack described at Section 3.1, two directions
can be taken to cryptanalyse the cipher. The first one has been investigated by Mihaljevié¢: it
is a minentropy attack. The second has been sketched in Section 3.2 and will be investigated
in a more refined way in the following Sections of this paper. It consists in decreasing the
amount of information we guess. It seems that the best attack will consist in the best tradeoff
with respect to both directions. We will study this tradeoff in Section 6.

4 Principle of Our Attack

Our aim is to generalize the method described at Section 3.2. In this attack we guess some bit
values and solve the system of linear equations by a Gaussian elimination when the system
of linear equations has rank n.

To adopt a more general point of view on this attack, we can say that we exploit the
information we have obtained when its amount is sufficient, i.e. when we have obtained n
bits of information on the key (recall that the key is the initial state of the LFSR). In Section
3.2 we exploit this information by a linear algebra method. Each linear equation in the key
bits represents one bit of information. Here the non-redundancy of the information obtained
is guaranteed by the independence of the linear equations.

In the following, we keep this point of view. We guess some information on the internal
sequence and directly compute the total amount of information we have obtained. The second
step consists then in exploiting this information by completely describing it by a system of
polynomial equations and solving this system with algebraic techniques.

4.1 Guessing Information

In the attack of Section 3.1, the amount of information that is guessed per keystream bit is
3. In the attack of Section 3.2, it is 2. What we want to do here is to further decrease this
amount of guessed information per bit. Instead of guessing the positions of the “1”s of the
subsequence s’ made of the even bits of the internal sequence, such as in the attack of Section
3.2, we guess the positions of one such bit out of 2.

Let us consider a sequence of keystream bits ;, xj41,- -, Titx, - - - . Each of these bits x;
correspond to a pair (1,z;) in the internal bitstream s. Then we guess the positions of the
corresponding pairs for x;, iy2, Titqa, -+, Tirok, . Thus for example the precise position
of the pair corresponding to ;41 is unknown but ranges between the position of the pair
corresponding to z; and the position of the pair corresponding to z;o.

Let us define for this attack a “block” of internal sequence bits: each block contains two
pairs beginning by 1 and the pairs beginning by “0” until the next “1” in the sequence. For
example, if the internal sequence is :

0110000110001000---,

the first block we find for this sequence is 10 00 01 10 00.

To know the position of one 1 out of two in s, it is enough to guess the size of consecutive
blocks of s, i.e. to guess the number of pairs beginning by 0 in each block. The probability
to have k pairs beginning by 0 in a block is the number of ways of distributing k bits among

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 7

2 places multiplied by Qk% The number of possibilities to distribute k bits among ¢ places

is (q—11€+k)' The probability is then here 2’“,;&12 The entropy of the information guessed by
keystream bit is:

L= 1) L)
H=—3) i loa(ls) ~ 1.356
k>0
This information describes the fact that we know that the first even bit of the block is “1”,
and that the other even bits are all “0” but one. The total amount of information we know
on this block comes from this information and from the fact that we know the values of
the keystream bits corresponding to the even “1”s of the block, i.e. two bits of information.
The average information we know about one block is then 2 x 1,356 + 2, and the known
information per keystream bit is 1,356 + 1 = 2,356. Thus for n bits of keystream, we get

2.356m bits of information if there is no redundancy. Then m must be approximately 5=

and the average complexity for the guessing part of the attack is 92555 = 20575

4.2 Exploiting the information

The next stage of the attack consists in exploiting the information we have obtained. This
information cannot be expressed only by linear GF(2) relations any more. But as we will see
now, it is possible to describe it by quadratic equations. To ease the understanding, we call
“subblock” all the pairs of a block but the first one. What we have to describe for each block
is:

1. The fact that the first and second bits of the block are known. This can still be described

by linear relationships.
2. The fact that only one pair among the pairs of the subblock begins by “1”. This informa-

tion can be divided into two parts:
— There is at most one “1” among the even bits of the subblock. This means that for

each even bit of the subblock s;, if s; is another even bit of the subblock, we have:
(si=1) = (s; =0)

This is equivalent to : s;s; = 0. Then this part of the information can be described by
(g) quadratic equations in the internal sequence bits.
— There is at least one “1” among the even bits ot the subblock. This is described by a

linear equation:
k+1

@ Sij =1
j=1

where the si; are all the even bits of the subblock.
3. The fact that the bit of the pair beginning by “1” in the subblock is known. This is

described by the fact that for each even bit s; of the subblock,
(sj=1) = (sj41=¢)

where e is the corresponding keystream bit. It can be translated by k41 quadratic boolean
equations:
sj(sj+1+€) =0

8 Blandine Debraize and Louis Goubin

As the composition of linear functions with quadratic equations is still quadratic, those equa-
tions can be written as quadratic equations in the key bits. We have then obtained a system
of quadratic equations over the field GF(2), completely describing the key.

When the blocks are short, it is possible to find some other equations describing the infor-
mation. We give a description of these equations for the general attack in appendix B. It is
interesting to have the most overdefined possible system of equation if programs like Grobner
basis algorithm or XL are used to solve the system. But in this paper we use SAT solver
algorithms for which working on very overdefined systems is not the best strategy. That is
why we do not add these additional equations in our systems.

We give here the results of our computations on these systems of equations for different
size of LFSR state n and three different Hamming weight hw for the feedback polynomial of
the LFSR:

Table 1. MiniSAT computations on quadratic systems of equations

hw =5hw=6hw="17
n =128| 0.02s | 0.03s | 0.05s
n = 256 | 0.025s | 0.046s | 62s
n =512|0.127s | > 24h | > 24h
n = 1024(122.25s| > 24h | > 24h

5 Generalisation of the Attack

5.1 Guessing Information

This method can be generalized. In Section 4, we have chosen to guess the position of one
even “1” in the internal sequence out of ¢ = 2. Now we can choose to guess the position of
one 1 out of ¢ bits, with ¢ > 2. This is again equivalent to guessing the length of the “blocks”
made of the consecutive bits of the internal sequence containing ¢ pairs of bits beginning by
“1” and the other pairs beginning by “0” until the next even “1”.

Each such block correspond to ¢ keystream bits. The average entropy per keystream bit
to guess the length of consecutive blocks is then:

g—1+k a—1+k
H(q) = - Z (Qq]:-k:) log((QqIch))

1=

For example, when ¢ = 3, H(q) = 1.0385.
As explained in Section 2.2, the total amount of information we obtain per keystream bit
is 1 4+ H(q). If there is no redundancy, it is then necessary to guess the length of the blocks

H(q)
n

corresponding to TFHQ keystream bits and the average complexity of the guess is 2T+H@ ",

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 9

Table 2. Average complexity of the guess for various values of ¢

q=2q=3|q=4]qg=5
20.57571 20‘50971 20.458n 20441711

Complexity

5.2 Solving the Polynomial System - Computational Results

As in Section 4.2, we need to completely describe the amount of information we have, by
means of polynomial GF(2) equations. This information can still be divided into three parts:

1. The first two bits of the block are know can be described by two linear equations.
2. The fact that the even bits of the subblock made of all the pairs of the block but the first
one are all “0” but ¢ — 1 of them is described by :

- (kgl) degree q polynomials of the form sg;,s9i, - -+ s2;,_, = 0 where 2k is the length
of the block and the sg;; are even bits of the subblock. This describes the fact that
there is at most one “1” among the even bits of the subblock.

— One equation of degree ¢ — 1:) s;,8i; - si,_, = 1, where the s;ys;, ---s;,_, are all
the monomials of degree ¢ — 1, describing the fact that there are at least ¢ — 1 “1”

among the even bits of the subblock.
3. The fact that the first keystream bit corresponding to this subblock follows the first even

“1” of the subblock is described by (];j) degree ¢ equations of the form

52i052iy " 82i4_o(S2i0+1 + €0) = 0, the fact that the second keystream bit corresponding
to this subblock follows the second even one of the subblock is described by (';j) degree
q equations of the form sg,82i; - -+ 52;,_,(52i,+1 + €1) = 0, etc, where the eg,e1--- , €42
are the keystream bits corresponding to the subblock.

The information on one block of length 2k is completely defined by the equations given
above. But there are some other equations describing the information we know about the
block making the system of equations overdefined. These equations are described in appendix
B.

If Grobner bases are used, it is well known that the smaller the degree is, the faster the
attack is also. With SAT solvers, even if this correlation is not so clear, our computations
showed that the complexity gets smaller when the degree of polynomials gets smaller. This
description with smaller degree equations for the small blocks then tends to show that the
shorter the blocks are, the faster the complexity of solving the system is. We will exploit this
at Section 6.

We have written the systems of equations for ¢ = 3 and ¢ = 4 for values of n ranging from
128 to 512. We fixed the value of the Hamming weight of the feedback polynomial to 5 as
greater values seem to lead to much slower attacks. We then applied our SAT solver algorithm
on these systems. We give the results of the computations in table 3.

6 Improvement of the General Attack

In the previous Sections, we have seen that the basic attack of [9] can be extended in two
directions. The first one (first proposed by Mihaljevié¢ in [12]) looks for a tradeoff between

10 Blandine Debraize and Louis Goubin

Table 3. MiniSAT computations on quadratic systems of equations for q=3 and q=4

n = 128|n = 256|n = 512

q=3| 2.28s 80s 2716s
qg=4| s 1728s | > 24h

time complexity and required keystream length. The second one, especially studied in this
paper, looks for a tradeoff between the cost of guessing information and the cost of exploiting
this information. The best attack consists then in choosing the best tradeoff in both directions
at the same time.

In [11] and [13], an attack is proposed that is already a tradeoff between a similar attack
as the one described in Section 3.2 and the best time complexity attack proposed in [12],
when the length of keystream is maximal. The authors guess all the even bits of a sequence
of the internal bitstream of length [, assuming that the rate of “1” in these even bits is at least
a (with a fixed o > %) They choose the value [, depending on «, in order to have enough
information to recover the key by a Gaussian elimination once they have guessed all the even
bits of the sequence. In order to find such a sequence, they go through the keystream. The
time and data complexity completely depend on «. For instance, the authors of [11] Zhang
and Feng obtain a time complexity of O(n321+La).

In Section 5, we denoted by ¢ the number of even “1” in a block, and considered guessing
the position of one even “1” out of ¢ in the internal sequence. In this model, Hell-Johansson
and Zhang-Feng attacks correspond to ¢ = 1. Our aim in this Section is to find the best
tradeoff for ¢ > 1.

In order to achieve this, we choose to limit the length of the blocks to a value ¥’ = 2k, where

k—1
k > q. The probability for a block to have length 2k is (‘12’,@1), where (’;:1) is the number of

1
possibilities for the even bits, assuming the first even bit is “1” and there are ¢ — 1 other “1”s

among the even bits of the block. Thus the probability for a block to have length at most 2k

is: L i
(4-0)
Do = Z q2j1

Jj=q

If the number of blocks for which we guess the position is [, then the probability for all the
blocks to have length at most 2k is (qug)l.

To compute this value [, we need to know the amount of information we have obtained
when all the lengths of the blocks are fixed. The entropy leakage provided by the keystream
gives ¢ bits of information per block. Then if we call h the amount of information we guess
for one block, the total amount of information we then know is h + q.

Let us compute hy , that is h for a block of length 2k. This information only concerns the
even bits of the block. The number of possibilities for the even bits is (Sj), i.e. the number
of manners to distribute the ¢ — 1 even 1s among the k — 1 even bits of the subblock made
of all the pairs of the block but the first one. This leads to an entropy of log((’;j)). This
quantity is the information we still need to guess to have the full knowledge about the even

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 11

bits of the block, that is k bits of information. Thus the amount we already know is

k-1
=k—1
hgr =k Og(<q_1>)

Then for each ¢ we need to find hy in, i.e. the minimum of h, j over all k. We found that for
g = 2, the minimum of the function holds when k = 2, for ¢ = 3 when £ = 4 and for ¢ = 4
when k = 6. We give the values of these minima in table 4.

Table 4. Minimal information known for the even bits of one block

g=2|g=3lg=4g=5
hgmin| 2 |2.415]2.678| 2.87

The minimal information we know about one block is hgmin +¢. We need an information
of n bits to recover the key. We still suppose that there is no redundancy in this information.
We now can compute the number of blocks [for which we guess the positions, as we know
that

l(hq,mm + q) =n

and we obtain [= —2%—.
hq,mzn,+q

Our attack is described in algorithm 6.1.

Algorithm 6.1 Our attack

INPUT : ¢,k, and a sequence of keystream of length NV
OUTPUT: values of the n key bits
PROCESSING:
compute [depending on g and k
For all the k' possibilities for the length of the I blocks:
For j =0to N — kl:
o Write the system of equations of degree ¢ corresponding to the
keystream indexed from z;
© Solve the system of equations by running MiniSAT on it.
o Run the SSG forward on the candidate(s) key(s).
o If the candidate key is the right one, output it and break the loop.

Now let us compute the amount of keystream necessary for this attack. We have computed
the probability of all the [blocks to have length at most 2k, that is (pq,k)l. Thus the keystream
length N should satisfy (N —kl)-(pyx)" > 1 if we want to find at least one match pair between
the real internal sequence and our guess. Then we must have:

N >

12 Blandine Debraize and Louis Goubin

At each step we try (k — ¢ 4 1)! possibilities for the length of the blocks. As the worst
case for this attack is a number of steps N, the worst case complexity is:

o
k—q+1
Zk‘ (z:i)

j=q 2J

where h stands for hg min.
This complexity is true if the information obtained is not redundant. We made simulations
by choosing a number of blocks of exactly {(pilk)l} and we always obtained the right key. If
q,

the key space given by the SAT solver is larger, we just perform an exhaustive search at small
scale.

Now we give the results of our computations. The details of the computations are in appendix
C. In this Section, instead of choosing random keys for our simulations, we chose keys such
that the blocks in the initial state of the LFSR have length at most k. To achieve this, when
generating randomly each block inside the initial state, we test (once it has reached length k)
whether the number of “1”s among the even bits is at least ¢. If not, we start again from the
beginning of the block. When the number of “1”s is as expected, we do it for the following
block, until we find a compliant key.

We try many such compliant keys in order to limit also the length of the other blocks in
the sequence but when when k is very small (k = ¢+ 1 or k = ¢+ 2) we could not achieve the
real conditions of the attack due to our limited computational power. Of course the running
time would be shorter in the exact case described in the attack as, as we can see it in table
10 and 11 (appendix C), the shorter the blocks are, the faster MiniSAT is for these system
of equations.

In table 5 and table 6, we give the total complexities of our attacks, for different block
lengths. The Hamming weight of the feedback polynomials are 5 for both LFSR state length
256 and 512. The memory requirements during the MiniSAT computations are never more
than 100Mb for this systems.

Finally Table 7 provides a performance comparison between Mihaljevi¢ attack, Hell-
Johansson attack and our new method, for various sizes of n and of the amount of available
keystream. For our attack, the results are bounded by our computational power and would
have probably been better if we could have performed all the computations for ¢ = 4 and
n = 512. Anyway the obtained (heuristical) complexities show that for this feedback polyno-
mial Hamming weight, our attack gives the best time/data tradeoff against the self-shrinking
generator.

7 Conclusion

In [13] and [11], where the best known time/data tradeoffs are proposed on the self-shrinking
generator, the authors show that their attack is independent from the value of the Hamming
weight of the feedback polynomial defining the LFSR. However, the new algebraic guess-
and-determine attack described here suggests that the security of SSG does depend on this
Hamming weight. This new attack is very flexible concerning keystream requirement. As we

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 13

use SAT solvers to solve our algebraic systems, it is not possible to compute a precise time
complexity for our attack. However for small Hamming weight values (i.e. at most 5), this
attack has a noticeably better complexity than the attacks of [13] and [11] and is even the
best heuristical time/data tradeoff known so far on the self-shrinking generator.

Since Meier and Staffelbach original paper, avoiding low Hamming weight feedback poly-
nomials has been a widely believed principle. However this rule did not materialize in previous
recent attacks. With the new attacks described in this paper, we show explicitly that this
principle remains true.

Table 5. Total complexity and data complexity for n = 256

k=q+1|k=q+2|k=q+3|k=q+4

time |data| time |data| time |data| time |data

qg= 2 2146.2 264 2154.2 234.6 2170.9 219.2 2181,4 210,7
qg= 3 2151.4 279.3 2147.2 247.3 2150 228.7 215742 21745
qg= 4 2153.6 292.6 2146.3 259 2147.2 238.3 2151,5 225

Table 6. Total time complexity and data complexity for n = 512

k=q+1 | k=q+2 |k=q+3| k=q+4

time | data | time | data | time |data| time |[data

qg= 2 2279.2 2128 2295.7 269.2 231848 23843 2343.8 221.4
qg= 3 2277.4 2158.7 22696 294.6 227943 25745 2293.5 235
qg= 4 2284.9 2185 2278.1 2118.1 226848 27647 > 2293 249.9

Table 7. Time complexity comparisons between Mihaljevi¢, Hell et al. and our attack for the same data
complexities

n = 256 n =512

data 265.3 2492 239.1 21745 2128 2946 257.5 23846

MlhalJeVIé attack 2153 2160 2165.5 2182 2297 2311 2331 2335

Hell et al attack 216042 2164.8 2167.8 2176A4 2300 2308.3 2320 2328

Our attack 214642 2147.2 2147.2 2157.2 2268.8 2268.8 2279.3 2293.5

14 Blandine Debraize and Louis Goubin
References
1. Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson: Efficient Methods for Conversion and Solution

10.

11.

12.
13.

of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers, http://eprint.
iacr.org/2007/024

. Cameron McDonald, Chris Charnes and Josef Pieprzyk Attacking Bivium with MiniSAT

http://eprint.iacr.org/2007/040
Gregory V. Bard and Nicolas T. Courtois Algebraic and Slide Attacks on KeeLoq
http://eprint.iacr.org/2007/062

. Nicolas Courtois, Adi Shamir, Jacques Patarin, Alexander Klimov, Efficient Algorithms for solving Overde-

fined Systems of Multivariate Polynomial Equations, In Advances in Cryptology, Eurocrypt’2000, LNCS
1807, Springer, pp. 392-407.

Jean-Charles Faugere: A new efficient algorithm for computing Grébner bases (Fa), Journal of Pure and
Applied Algebra 139 (1999) pp. 61-88. See www.elsevier.com/locate/jpaa

Jean-Charles Faugere: A new efficient algorithm for computing Grébner bases without reduction to zero
(F5), Workshop on Applications of Commutative Algebra, Catania, Italy, 3-6 April 2002, ACM Press.
Don Coppersmith, Hugo Krawczyk and Yishay Mansour: The Shrinking Generator, In Crypto’93, LNCS
773, pp. 22-39, Springer-Verlag, 1994.

Hugo Krawczyk: Practical Aspects of the Shrinking Generator, in FSE’94, pp. 45-46, LNCS 809, Springer-
Verlag, 1993.

Willi Meier and Othmar Staffelbach: The Self-Shrinking Generator, In Eurocrypt 94, LNCS 950, pp.
205-214, Springer 1994.

Matthias Krause: BBD-based Cryptanalysis of Keystream Generators, In Eurocrypt 2002, pp. 222-237,
LNCS 2332, Springer 2002.

Bin Zhang, Dengguo Feng: New Guess-and-determine Attack on the Self-Shrinking Generator, Asiacrypt
2006, to appear in LNCS, Springer.

Miodrag J. Mihaljevié: A faster cryptanalysis of the self-shrinking generator. ACISP 1996: 182-189
Martin Hell, Thomas Johansson: Two New Attacks on the Self-Shrinking Generator IEEE Transactions
on Information Theory, Vol. 52, no. 8, pp. 3837- 3843, Aug. 2006.

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 15

A Computation of the Information Rate for the Self-Shrinking Generator

We have seen in Section 2.2 that the information rate that the keystream y reveals on the
first m bits of internal sequence z is defined as

1
—1- —H(Z™|y
o(m) =1~ ~H(Z"|Y)
We have:
H(ZM|Y) = ZProba Z™M = 2 Y = y)log(Proba(Z™ = 2|Y = y))
= Z Proba(Y =)} Proba(Z(™ = z|Y = y)log(Proba(Z™ = z|Y =y))
The self-shrinking generator has the property that for m > 1 the probability that C(z) is

prefix for y for a randomly chosen and uniformly distributed z € {0,1}" is the same for all
keystream y. This implies that

Z Proba(Z™ = 2|Y =) log(Proba(Z™ = 2|Y = y))

is the same for all y and

H(ZM|y) = Z Proba(Z™ = 2|V = y)log(Proba(Z™ = 2|Y = y))

Let us call Z° the random variable of the first pair of bits of the internal sequence, Z! the
second pair, etc. We have:

H(Z°lY) = Proba(Z° = z[Y = y)log(Proba(Z° = z|Y =y)) = >

20

Let us now show by recursion that H(Z®*|Y) = (3)k.

H(ZPRy) = Z Proba(ZF = z,--- , Z° = 2|V = y) log(Proba(Z* = z,,--- , 2% = %|Y =y))

And as

Proba(Zk = Z,- - 7Z0 = 20|Y — y) =
Proba(ZF = 2| ZF Y = 21 -+, Z° = 20, Y = y) x Proba(ZF 1 =z, -, 20 = 5|V =)

16 Blandine Debraize and Louis Goubin

we have:

H(Z®|Y)= Y Proba(Z" 7 =z 1, 2% = »|Y =y) x
Zlk—15""" 520
ZProba(Zk—zk\Zk Ve, 2% =20, Y =) x
2k
log(Proba(Zk = zk]Zkfl =21, 20 =20, Y = y))
+ Z Proba(Zk_1 = zp1, -, 20 = 20|Y =y) x

Zk—15"" 520
log(Proba(ZF 1t = z,_1,- -+, 2% = %|Y = y)) x
ZProba(Zk =2 =z, 20 =2,Y =)
2k

We have

ZProba(Zk = zk|Zk_1 =25 1,20 =2,Y = y) =1

and by recursion

Z Proba(ZF ' = z,_ -+, 2% = |V =y) x

Zk—15""»%0

log(Proba(ZF 1t = 21,20 = 2|V =y)) = g(k -1)

Once the first k£ — 1 internal sequence pairs are fixed, let r be the number of 1s among
the first bits of the k — 1 pairs. Let us call ¢/ the keystream sequence where the first r bits of
y have been removed. Then the pair Z* can be seen as the first pair of the internal sequence
where C(Z¥) is prefix for 3. Thus:

Proba(Z¥ = 2|28 1 = 2,1 -+, Z° = %, Y = y) = Proba(Z* = 2|y =)
and the first part of H(Z®P|Y) is

Z Proba(Z¥ = 2,|Y = 3/) log(Proba(Z* = 2,|Y = ¢/)) = g
2k

We have obtained H(Z®F|Y) = Skand a(2k) =1—3 - & k= 1.

B Additional equations

When we guess the position of one “1” out of ¢ in the internal sequence, we have the following
additional equations describing the information we know about one block:

. -1
— One equation of degree ¢ —2: > s9i,52;, - - " 82, 5 = (372) mod 2, where s2;,52;, - - - 52i4_3

are all the degree ¢ — 2 monomials of the subblock, and (g:;) is the number of monomials
equal to 1 when the variables are given the values corresponding to the even bits of the

subblock.

Guess-and-determine Algebraic Attack on the Self-Shrinking Generator 17

— One equation) $2;,52i, - - - 82iq_4 = (g:é) mod 2, where the s9;,82;, - - - s2;,_, are all the
monomial of degree g — 3.

— One equation) sg;,52i, = (qgl) mod 2, where the s9;,52;, are all the degree 2 monomials
of the subblock.
— One linear equation »_ s9; = ¢— 1 mod 2.

Some other equations of degree less than ¢ appear when the block have a short size (such
as 2q, 2+ 2, 2q+ 4, ...):

— When the size of the block is 2¢, the information concerning this block can be described
by linear equations, since we know all the values of the bits of the block.

— When the size of the block is 2¢ + 2, the information can be described by quadratic
equations coming from the fact that if so;,, s25, are even bits of the subblock,

(825, = 0) = (s2j, = 1)

and
(52, = 0) = (s25,41 =€)

where e is the corresponding keystream bit.
— When the size of the block is 2¢q + 4, the information can be described the same way by
cubic equations, etc

C Simulations Details

In tables 8 and 9, we give the complexity of the guess and the data complexity for our attack
when the size of the LFSR is 256 or 512.

In tables 10 and 11, we give the time complexity of the MiniSAT solving part of the
attack. We first give the running time in seconds, and then we give an estimation of the
complexity of the form 2¢ for each case to be able to compare our attack with the Hell and
Johansson attack of [13]. This means that 2%FE is the running time of the solving, where En?
would be the running time of the Gaussian elimination in the Hell and Johansson attack on
the same machine. Concerning the Mihaljevi¢ attack, we just consider that testing the found
key (by running the generator on it), is about n operations, where n is the size of the key.

We measured E ~ 2740 hours. With this convention, a running time of one hour corre-
sponds to a complexity of 240.

18 Blandine Debraize and Louis Goubin

Table 8. Complexity of the guess and data complexity for n = 256

k=q+1|k=q+2|k=q+3|k=q+14

time |data| time |data| time |data| time |data
q = 2| 2128 | 964 | 9136 |934.6|9147:2|919.2|9159.3|910.7
g = 32126:6|979:3|9122:2947.3|9123.3|928.7|9127.3917.5
q = 4| 2128 [92:6(119.8| 959 | 9115 |938.3| 9114 | 925

Table 9. Complexity of the guess and data complexity for n = 512

k=q+1 | k=q+2 |k=q+3|k=q+4

time | data | time | data | time |data| time |data

2256 2128 2272 269.2 229443 23843 2318.6 221.4

2253‘2 215&7 22444 294.6 22466 2575 2254,6 235

2256 2185 2239.6 2118.1 2230 27647 2228 249.9

Table 10. MiniSAT Computations for n = 256

k=q+1 k=q+2 |k=q+3 | k=q+4
g = 2|< 0.001s[2'82|< 0.0015(282]0.0465|22%7|0.0155|22%1
q = 3| 0.093s [22*8| 0.109s | 22° |0.3595|2757| 3.39s [2299
qg=4| 0.171s [2%:¢| 0.311 [223] 15.6 |2322| 6165 2375

Table 11. MiniSAT Computations for n = 512

k=q+1| k=q+2 | k=q+3| k=q+4

5.2

g = 2|0.031s(2222] 0.046s [22%7]0.078s|224:5(0.125s| 2%°
g =3|0.06s [2292] 0.17s (23] 22.35(237-7| 16415 | 2389

q = 4(1.1715(2%8-2|1308.55|2%8-5| 1613 [238-8|> 24h|> 2%°

