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Abstract. The field of Pairing Based Cryptography (PBC) has seen
recent advances in the simplification of their calculations and in the im-
plementation of original protocols for security and privacy. Like most
cryptographic algorithms, PBC implementations on embedded devices
are exposed to physical attacks such as side channel attacks. Such at-
tacks which are able to recover the secret input used in some PBC-based
schemes are our main focus in this paper. Various countermeasures have
consequently been proposed. The present paper provides an updated
review of the state of the art countermeasures against side channel at-
tacks that target PBC implementations. We especially focus on a tech-
nique based on point blinding using randomization. We propose a colli-
sion based side-channel attack against an implementation embedding the
point randomization countermeasure. It is, to the best of our knowledge,
the first proposed attack against this countermeasure used in the PBC
context. This raises questions about the validation of countermeasures
for complex cryptographic schemes such as PBC. We also discuss about
ways of thwarting our attack. This article is in part an extension of the
paper [19] published at Secrypt 2017.

Keywords: Pairing-based cryptography, Miller’s algorithm, side-channel
attack, collision side-channel attack, countermeasures.

1 Introduction

Bilinear pairings are used in cryptography for various innovative protocols. In
2001, Boneh and Franklin published the Identity-Based Encryption (IBE) scheme
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based on Pairings [10]. The one-round tripartite key exchange [21] based on Pair-
ings is another interesting practical use of such cryptographic primitives. Both
protocols have been rewarded by the 2013 Gödel price for their advance in the
cryptographic area.

Several studies have investigated about the vulnerability of PBC to side-
channel attacks. The first papers to consider the security of pairings regarding
side-channel attacks were mainly concerned with elliptic curves defined over
small fields of characteristics 2 and 3 is Page et al. [34]. Although Joux [22]
and Barbulescu [3] recently suggested that such fields should be avoided, some
of those techniques intended for small characteristic fields can nevertheless be
applied over large prime fields. At high level a pairing is a bilinear and not
degenerate map denoted e : G1 × G2 → G3 where G1, G2 and G3 are abelian
groups of the same order l. In an IBE [10] scheme that uses pairings, a cipher is
decrypted by the computation of a pairing between a secret point and another
point that is part of the input cipher. In a nutshell, in the IBE [10] scheme the
decryption step consists in deciphering the ciphertext constituted by the pair
{U, V } with U ∈ G1 and V ∈ {0, 1}n using the private key D. The entity needs to
compute e(D,U). Side-channel attacks against such a scenario aim at exploiting
the interaction between the known ciphertext point and the secret point
(which is part of the private secret key). A pairing calculation has a double-and-
add structure, as is the case in Elliptic Curve Cryptography (ECC). However,
with PBC the problem regarding side-channel attacks is different: the number of
iterations and the scalar are known; and the secret is one of the arguments of the
pairing. Consequently, side-channel attacks on PBC implementations are more
likely to rely on Correlation Power Analysis-like (CPA) techniques to target the
secret point (compared to using Simple Power Analysis-like (SPA) approaches
to target the scalar in the double-and-add structure).

In this paper, we review various side-channel attacks used against PBC imple-
mentations and the associated countermeasures. We then focus on one of those
countermeasures in order to explain and illustrate how to defeat it with an attack
that has never been developed against PBC. The paper is organized as follows.
The Section 2 recalls the bases on the pairings necessary for their comprehension
for this article. We review related work concerning side-channel around PBC in
the Section 3. The Section 4 provides an analysis of a countermeasures under
our investigation and explains how this protection can be defeated. Then the
Section 5 describes the practical experiments and results obtained when imple-
menting this attack against a software pairing calculation running on a 32-bit
platform. A conclusion is then proposed in the Section 6.

2 Pairings as a cryptographic application

In this section, we provide the concepts and notations that will be used through-
out this paper. For a detailed explanation of pairings we refer the reader to [38].
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2.1 Pairing description

Let q be a large prime number and E be an elliptic curve defined over Fq. E can
be written as

E = {(x, y) ∈ Fq × Fq|y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}, (1)

where O denotes the point at infinity: it is the identity element for the addition
group law. The set of l-torsion points of E is E[l] := ker[l] (the set of points P
in E such that [l]P = O), the rational torsion points are given by E (Fq) [l] :=
E (Fq)∩E[l]. The smallest positive integer k such that l divides qk − 1 is called
the embedding degree of E (Fq) with respect to l. As soon as k > 1, the group
E (Fq) [l] is included into E

(
Fqk
)
. Let G1 = E (Fq) [l] ∪ E (Fq), G2 = E

(
Fqk
)
∪

E (Fq) [l] and G3 be the group of l-roots of unity in Fqk .

1. Non-degeneracy: ∀P ∈ G1 \ {O} ∃Q ∈ G2 such that e(P,Q) 6= 1,

2. Bilinearity:

e([a]P1 + [b]P2, Q) = e(P1, Q)ae(P2, Q)b, fora, b ∈ Fl

e(P, [a]Q1 + [b]Q2) = e(P,Q1)ae(P,Q2)b
.

The above properties can be verified by using groups of points on elliptic
curves for both abelian groups.

The Tate Pairing. The widely used Tate pairing [6, 13, 16, 37] takes as inputs
two points P and Q such that P ∈ E (Fq) [l] and Q ∈ E (Fq) as provided in
Equation 2 where µl is the group of the l-th roots of unity such that µl = {ξ ∈
F?
qk |ξ

l = 1}. A final exponentiation qk−1
l is applied to the output fP (Q) in order

to obtain a unique value of order l.

τl : E (Fq) [l] ∪ E (Fq)× E
(
Fqk
)
\ E (Fq) [l]→ F?

qk/
(
F?

qk

)l → µl ⊂ F?
qk

P,Q 7→ fl,P (Q) 7→ fP (Q)
qk−1

l

(2)

where fl,P represents the Miller’s function.

The Barreto–Naehrig curves [5]. This family of curves is widely used to
get efficient implementations of pairings. The pairing-friendly ordinary elliptic
curves over a prime field Fq are defined by E : y2 = x3 + b where b 6= 0. Their
embedding degree is k = 12. The order of E is l, a prime number. The BN curves
are parametrized with p and l as follows:

p(t) = 36t4 + 36t3 + 24t2 + 6t+ 1,
l(t) = 36t4 + 36t3 + 18t2 + 6t+ 1,

(3)
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where t ∈ Z is chosen in order to get p(t) coprime to l(t) and large enough
to guarantee an adequate security level. According to recent development on
the resolution of discrete logarithm, the BN curves could be no longer the most
accurate choice for an efficient pairing implementation. We demonstrate our work
using BN curves as we had an existing efficient implementation. However, our
approach is independent from the family.

The Miller’s function The Miller’s function fl,P is a rational function defined
by its divisor: Div(fl,P ) = l(P ) − ([l − 1]P ) − (O). The computation of such a
map is a well known problem [6] and an efficient way of computing such pairings
was proposed as a recursive scheme by Miller [30]. Miller’s algorithm, which
works as the main calculation to compute a pairing, uses an iterative relation to
construct the rational function fl,P . The Miller’s loop is given in Algorithm 1.

Algorithm 1: Miller’s algorithm.

Data: l = (ln−1 . . . l0)2, P ∈ G1 and Q ∈ G2

Result: fl,P (Q) ∈ G3

1 T ← P ;
2 f ← 1;
3 for i = n− 1 downto 0 do
4 f ← f2(lT,T (Q));
5 T ← [2]T ;
6 if li == 1 then
7 f ← f(lT,P (Q));
8 T ← T + P ;

9 end

10 end
11 return f ;

In Algorithm 1:

1. lT,T (Q) is the equation of the tangent at T evaluated at point Q.

2. lT,P (Q) is the equation of the line through T and P evaluated at point Q.

These equations are optimized by using mixed system coordinates for the points’
representations as suggested in [1, 2, 8, 26] and [33]:

1. P and Q are in affine coordinates.

2. T is in Jacobian coordinates, i.e. if T = (xT , yT ) =
(

XT

Z2
T
, YT

Z3
T

)
in affine

coordinates then T = (XT : YT : ZT ) in Jacobian.

With this representation the tangent and line equation are shown in Equa-
tion 4.
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lT,T (Q) = 2yQYTZ
3
T − 2Y 2

T −
(
3X2

T + aZ4
T

) (
xQZ

2
T −XT

)

lT,P (Q) = (yQ − yP )ZT

(
XT − Z2

TxP
)
−
(
YT − Z3

T yP
)

(xQ − xP )
(4)

In the following, our implementation is a Tate pairing over Barreto and
Naehrig curves [5].

2.2 Application to Identity-Based Encryption

An IBE scheme can be used to simplify a widely known issue in public key
cryptography: the key exchange [23]. A Public-Key Infrastructure (PKI) based
on IBE is less complex and more scalable compared to classical schemes (with
certifications).

In an IBE, the public key of a character is its identity. The associated private
key can’t be computed by this character, but generated by the Private Key
Generator (PKG). Of course, the decryption should be possible only with the
private key.

A simplified version of the scheme of Boneh-Franklin [10] work in four steps:

1. Setup. The PKG have to generate some public parameters for the pairings.
Let G1 and G2 be two groups of order l such that e : G1 × G1 → G2 is a
bilinear pairing. Let P ∈ G1 be a generator of G1. let H1 : {0, 1}? → G?

1 and
H2 : G2 → {0, 1}n be two cryptographic hash functions. Let s ∈ Zr be random,
s is their private key (a master key of the system). Let PPUB = [s]P be the
global public key. The set of public parameters is

{r, n,G1,G2, e, P, PPUB , H1, H2}.

2. Extraction. The extraction algorithm supplies the private key of a user. Let
ID = ”Bob” ∈ {0, 1}? be the identity of a user Bob. The PKG hashes this
string into G1 in order to obtain QB = H1(ID). Bob’s private key is dB = [s]QB

(computed and transmitted to Bob by the PKG).

3. Encryption. Alice wants to send a message M ∈ {0, 1}n to Bob, she proceeds
as follows:

1. She computes QB = H1(”Bob”).
2. She randomly picks k.
3. She computes gB = e(QB , PPUB) ∈ G?

2.
4. Then, she computes the ciphertext C = {[k]P,M ⊕H2(gkB)} and sends it to

Bob.

4. Decryption. Bob wants to decrypt the ciphertext C = {U, V } where U ∈
G1, V ∈ {0, 1}n, he proceeds as follows:

1. He computes e(dB , U) which is equal to e([s]QB , [k]P ) = e(QB , P )sk =
e(QB , [s]P )k = e(QB , PPUB)k = gkB .

2. He gets the message M = V ⊕H2(gkB).
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3 Related Work and Contributions

Differential Power Analysis (DPA) attacks have been first introduced by Kocher
et al. in [28]. Since then, DPA-like techniques have been successfully used to
attack implementations of most cryptographic algorithms.

3.1 Related Work in Side-Channel Attacks against Pairings

The first paper to investigate about the physical security of pairing algorithms
was published in 2004. In this paper, Page and Vercauteren [34] simulated an at-
tack on the Duursma–Lee Algorithm [12] which is used to compute Tate pairings
using elliptic curves over finite fields of characteristic 3. The authors exposed the
vulnerability of such pairings with respect to active (fault injections) and passive
(side-channel observations) attacks. The authors also proposed two countermea-
sures to thwart side channel attacks.

The first countermeasure is based on the bilinearity of the pairing where,
if a and b are two random values, then we have the equality: e(P,Q) =
e([a]P, [b]Q)1/ab. The second countermeasure, proposed in [34], works for cases
where P is secret and a mask is added to the point Q as follows: select a ran-
dom point R ∈ G2 and compute e(P,Q + R)e(P,R)−1 instead of e(P,Q), with
different random values of R at every call to e.

The main inconvenience of these countermeasures is the computation over-
head where two pairings are calculated instead of one.

Pan and Marnane [35] simulated a side-channel attack where they proposed
a CPA based on a Hamming distance model to target a pairing over a base field
of characteristic 2 over super-singular curves. The practical results obtained by
Pan and Marnane can be used to assess the feasibility of using CPA to target
pairings on an FPGA platform.

Kim et al. [24] also examined the security of pairings over binary fields.
They addressed timing, SPA, and DPA attacks targeting arithmetic operations.
In order to propose a more efficient countermeasure to protect Eta pairings,
Kim et al. [24] implemented the third countermeasure proposed by Coron [11],
which uses random projective coordinates. The randomization countermeasure
proposed by Kim et al. adds just one step at the beginning. For greater efficiency,
when P is secret, they randomized only the known input point Q. Its effect is
“removed” during the final exponentiation.

This approach can be adapted to other pairing algorithms that are based on
either small or large characteristic prime fields. This method is similar to the
countermeasure suggested by Scott [37]. It consists in randomizing the Miller
variable in Algorithm 1 by multiplying the operations 4 and 7 by a random
λ ∈ F?

q . The result is correct because the random element is eliminated through
the final exponentiation.

In the end, these countermeasures only add few modular multiplications,
which means a small overhead.

Whelan and Scott [41] studied pairings with different base field characteris-
tics. They analyzed the arithmetic operations and concluded that the secret can
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be recovered by using a CPA. But the authors specified the need to have the
point Q (second entry) as secret for the attack to work. The latter conclusion
was refuted by El Mrabet in [14], which, to our best knowledge, is the first paper
to present a concrete attack on Miller’s algorithm with P (first input) as secret.

Another attack, this time on an FPGA platform, is proposed by Ghosh et
al. [17]. They performed a bitwise DPA attack on an FPGA platform by measur-
ing the power consumption leakages during the modular subtraction operations.
To counteract this attack, the authors proposed a “low-cost” protection based on
a rearrangement principle whose aim is to prevent interaction between a known
value and a secret input as it happens in the calculations involved in the tan-
gent or line evaluations. To achieve this, the authors proposed to rewrite the
line equation to prevent the addition and/or subtraction operations between the
known and secret data. They used the distributivity properties, i.e. if an instruc-
tion is (k − y1)y2 with k being the secret and y1, y2 being known integers, then
the target operation is (k − y1). To avoid this, the authors proposed to rewrite
it as ky2 − y1y2. Indeed, this trick avoids the critical subtraction. However, this
time this trick does not protect the modular multiplication and fails to protect
against classical attack schemes as presented in [14, 41] and [9].

Moreover, Blömer et al. [9] studied DPA attacks by targeting modular ad-
dition and multiplication operations of finite field elements with large prime
characteristics. Their paper describes an improved DPA for cases in which mod-
ular addition is targeted by combining information derived from manipulations
of the least and most significant bits. In addition, the study provided simula-
tion results to prove the feasibility of the attack. Furthermore, they propose
a new countermeasure. In the reduced Tate pairing, the set of the second ar-
gument input is the equivalence class E(F

qk
)/lE(F

qk
). If the random point T is

chosen initially from E(Fqk) of order r, coprime to l, then T + Q ∼ Q. Hence,
e(P,Q+ T ) = e(P,Q). This trick makes it possible to obtain a countermeasure
as powerful as that of [34] with no overhead.

The importance of implementing countermeasures is supported by the recent
results of Unterluggauer and Wenger [39] and Jauvart et al. [20], where attacks
are presented in the real world environment. Indeed, Ate pairings implemented
on Virtex-II FPGA, ARM Cortex-M0 and ARM Cortex-M3 have been broken
efficiently with CPA attacks.

Despite all this existing literature on side-channel countermeasures for Pair-
ings, to our best knowledge, none have actually tested or validated the efficiency
of those countermeasures when considering analysis attack. In this paper we
investigate about the level of protection provided by the randomization of co-
ordinates which seems to be a classy and efficient countermeasure. To our best
knowledge, except for fault attacks, no particular problem has been reported in
the literature regarding this countermeasure applied to Pairings. But our analy-
sis shows that this countermeasure can be defeated by a collision-based attack.
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3.2 Collision based side channel attacks

The use of “collisions” as a means of exploiting side channel attacks is not
something new in the literature. In this section we provide a quick review of the
existing background in this very precise field before describing our approach and
the differences with the existing state-of-the-art.

Collision attacks were first introduced in [36]. The main idea is to use the side-
channel leakages to detect collisions in the encryption function, such collisions
may appear internal to the function, in their attack it is not mandatory to observe
collisions only at the output. Collisions inside the Data Encryption Standard
(DES) can be detected using side-channels and exploited in order to retrieve
the secret key used by the algorithm. This new class of attack was later used to
circumvent countermeasures used in “secure” implementations of the Advanced
Encryption Standard (AES) in [32].

The use of collisions against implementations of public key cryptographic
algorithms have also been described. To achieve this, Fouque and Valette [15] use
the following assumption: if two operations involve a common operand then the
use of this common operand, can be detected using side-channels for attacking,
in their example, the RSA exponent. More precisely, even if an adversary is not
able to tell which computation is done by the device, he can at least detect when
the device does the same operation twice. For example, if the device computes
2.A and 2.B, the attacker is not able to guess the value of A nor B but he is
able to check if A = B.

Similar work has been suggested by Bauer et al. in [7]. This time the target is
a scalar multiplication over an elliptic curve. The assumption is still the same: the
adversary can detect when two field multiplications have at least one operand in
common. In a double-and-add algorithm the doubling step and the addition have
a slight difference. One of them (depending on the curve representation) performs
two modular multiplications with the same operand. Collision detection allows
to distinguish between the doubling and the addition operations, from which the
secret scalar can be deduced.

In [40], the authors target a protected Elliptic Curve Digital Signature Algo-
rithm (ECDSA) implementation. One of the weak points of this protocol is the
calculation of a modular multiplication between a known variable and the secret
key. Thus a DPA is able to recover the key [18]. To counteract this attack, a trick
consists in distributing a calculus to remove such critical operations. As an exam-
ple, whenever the operation mask(plaintext+ public key× secret key) must be
computed, they propose to do mask×plaintext+(mask×secret key)public key
instead. The drawback revealed by Varchola et al. is that the additional calcu-
lation is between the known message and the temporary mask (which changes
from one execution to another) while another calculation is made between this
same mask and the secret. Thus, with the same assumption that in the previous
cases [7] and [15], the collision detection will make it possible to discover whether
the known (and controllable) message is equal to the secret key.



Resistance of the Point randomisation for pairings 9

Our contribution adapts the principle of collision detection – based on the de-
tecting when the same operand is used twice – to circumvent the randomization
of Jacobian coordinates countermeasure used to protect pairing.

4 Security analysis of the countermeasure based on
randomized Jacobian coordinates

The previously described countermeasures have been proposed without any the-
oretical security proofs, and to the best of our knowledge, no practical evidence
has been provided neither. In this section, we first introduce the classical CPA
against an unprotected pairing implementation. This will allow us to show how
the countermeasure analysed in this paper plays an important role. Next, we
will be able to compare the effectiveness of an attack on an unprotected and a
counter-measured pairing to note the effectiveness of the countermeasure. The
analysed contermesure is the Miller’s algorithm with randomized Jacobian coor-
dinates. We show how collisions can be used to make this countermeasure fail.
We introduce a first “straight-forward” scheme to detect collisions and we show
that this approach has its limits in practice. Then we adapt a refined method
proposed in [40] for detecting collisions by implementing it on our target device
and we show how practical results of how this collision-detection scheme defeats
the point randomization countermeasure.

4.1 Classical side-channel attack against unprotected pairing
implementation

For performance reasons, the use of mixed affine-Jacobian coordinates has been
often proposed in the literature [1, 2, 8, 26] and [33]. In this case, at the beginning
of the Miller’s algorithm, the point P is assigned to T , with T expressed in
Jacobian coordinates. This operation comprises the following steps:

1. XT ← xP ; YT ← yP ; ZT ← 1,

2. T ← (XT : YT : ZT ).

We are looking for an operation that takes as operands: known data and secret
data. Such operation appear during the first iteration of the Miller loop. More
precisely, in the calculation of the tangent line, the evaluation of the tangent line
is as follow:

2YTZ
3
T yQ − 2Y 2

T − (3X2
T + aZ4

T )(xQZ
2
T −XT ), (5)

where a is a parameter for the BN curves. The attacked coordinates are xQ and
yQ, they are respectively involved in the multiplications xQ(Z2

T ) and (2YTZ
3
T )yQ.

The secret coordinates are attacked with a CPA against the modular multipli-
cation. The coordinates of the point T = (XT : YT : ZT ) are known since they
are initialized to those of the known point P .
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Attack against the modular multiplication. The context is the following:
the targeted modular multiplication a× b mod p is a Montgomery’s CIOS Mul-
tiprecision Multiplication algorithm 2. It is a common choice for cryptographic
applications due to its low cost, this choice does not affect the attack anyway. For
more details about Montgomery multiplication implementation, we recomend to
read [27].

Algorithm 2: CIOS Modular Montgomery Multiplication

Data: The modulus p = (pN−1 . . . p0)W coprime with W, R = W
N

, p′ such
that RR−1 − pp′ = 1 and two integers a = (aN−1 . . . a0)W and
b = (bN−1 . . . b0)W.

Result: The unique integer c = (cN−1 . . . c0)W such that
c = Redc(ab) =

(
abR−1

)
mod p.

1 c← 0 ;
2 for i = 0 to N− 1 do
3 u← 0 ;
4 for j = 0 to N− 1 do
5 (uv)← cj + ajbi + u ;
6 cj ← v ;

7 end
8 (uv)← cN + u ;
9 cN ← v ;

10 cN+1 ← u ;

11 m← c0p
′
0 mod W ;

12 (uv)← c0 +mp0 ;
13 for j = 1 to N− 1 do
14 (uv)← cj +mpj + u ;
15 cj−1 ← v ;

16 end
17 (uv)← cN + u ;
18 cN−1 ← v ;
19 cN ← cN+1 + u ;

20 end
21 if (cN−1 . . . c0)W < p then
22 c← (cN−1 . . . c0)W ;
23 else
24 c← (cN−1 . . . c0)W − p ;
25 end
26 return c ;

The operation which involves known and unknown data is the following
(line 5):

(uv)← cj︸︷︷︸
carry

+ ajbi︸︷︷︸
word integers

+ u︸︷︷︸
register

. (6)
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The 64-bit registers (uv) are affected into the new variable. In this new variable
appear the product ajbi, two interesting machine words. One of them (aj) is
a word of the secret integer, i.e. derived from the point Q. While bi is a word
from the known integer P inputs in the Miller algorithm. The 32-bit of the
secrete word are recover byte by byte. Thus, the known word is over 32 bits
several leakage models are possible, the paper of Jauvart et al. [20] show some
difference and select one of them. Figure 1 summarizes the choice of the 16-bit
model.

aj 8 bits

bi 32 bits

× 32 + 8 bits

2× 8 bits = φ

Fig. 1. Word machine leakage model

The aim of correlation power analysis is to compare, by a correlation calculus,
the side-channel leakages and the hypothetical intermediate state during the
multiplication procedure. The side-channel leakages are the measurement traces.
The intermediate state is computed between the known input (bi) and all of
the 28 = 256 key hypothesis for the least significant byte. This intermediate
calculus is mapped in intermediate state by the well know Hamming weight
leakage model. The key whose calculation of correlation between the derived
intermediate state and the side-channel traces which maximizes the correlation
is retained as the candidate key.

Afterward, the others 3 bytes are attacked in the same way.

4.2 The Miller’s algorithm with randomized Jacobian coordinates

Such protection is convenient to be applied in the Miller’s algorithm using the
mixed affine-Jacobian coordinates and relies on the homogeneity of Jacobian
coordinates. The above steps in Section 4.1 are replaced by the proposed coun-
termeasure, for which the input point P is known, and Q is the secret point:

1. λ ∈ F?
q is randomly generated,

2. XT ← xPλ
2; YT ← yPλ

3; ZT ← λ,
3. T ← (XT : YT : ZT ).

The full Miller algorithm that integrates this countermeasure is given in
Algorithm 3.

All attacks against pairings proposed so far are DPA/CPA-like approaches
that target arithmetic operations such as modular additions or multiplications
between a known (public) value and a secret (key) one. Our attack scheme is
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Algorithm 3: Miller’s algorithm with randomization of Jacobian coor-
dinates.
Data: l = (ln−1 . . . l0) radix 2 representation, P ∈ G1 and Q ∈ G2

Result: fP (DQ) ∈ G3

1 λ ∈ F?
q is randomly generated ;

2 XT ← xPλ
2;

3 YT ← yPλ
3 ;

4 ZT ← λ;
5 f ← 1;
6 for i = n− 1 downto 0 do
7 f ← f2(lT,T (Q));
8 T ← [2]T ;
9 if li == 1 then

10 f ← f(lT,P (Q));
11 T ← T + P ;

12 end

13 end
14 return f ;

different as it exploits collisions which may appear during the same execution of
a pairing.

Of course, since the recent results of Joux [22] and Barbulescu [3], pairings
in small characteristic based field are no longer recommended. Nevertheless, the
proposed countermeasures in such fields can also be used in other fields with a
very small overhead.

4.3 Detecting collisions in point-randomized Pairing calculations

Our attack is based on the following observation: in Algorithm 3 the mask is
applied once to the public parameter and at least once to the secret input. During
the first iteration of Miller’s loop, the tangent evaluation calculates (xZ2

T −XT ),
which is in fact (xλ2−xPλ2), for which xλ2 is computed in the tangent evaluation
and xPλ

2 is computed in the randomization step.

Thus, if the known input xP is equal (or “partially equal”) to the secret x,
then the EM traces are expected to be similar. The data x, xp are long precision
integers, for instance 256-bit integers, and then it is impossible to test all the
2256 values for x. However, the targeted operations work on “word reprensen-
tations” of those integers, like for example when implementing the Montgomey
multiplication [31]. So, we can consider only one word of each of those integers.
Even with this remark, the words are still too long, for instance, a 256-bit integer
can be stored in 8 words of 32 bits in an 32-bit architecture. Then “partially
equal” denotes the equality of a part of the word such as the least significant
byte.
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In order to exploit this observation, our proposed attack scheme is the fol-
lowing. We assume that there exist 28 points Pj such that the 8 LSBs (Least
Significant Bits) of the x coordinate cover all 28 possibilities.

xP0
= (? ? · · · ? 00000000)2

xP1
= (? ? · · · ? 00000001)2
...

xP255
= (? ? · · · ? 11111111)2

We then perform a pairing between each Pj and the secret point Q. The λj
value is chosen at random. For each EM trace, it is necessary to focus on two
critical moments: the computations of xPjλ

2
j and xλ2j .

For each of the resulting “pairs of traces”, we need to evaluate the similarities
between the two signals. These similarities can be estimated through cross corre-
lations for example. The maximum correlation coefficient then yields a candidate
for the 8 LSBs of the secret x.

Averaging is necessary in order to reduce the effect of noise on the attack.
Obviously, due to the randomness of λ, it is not recommended to average the
acquired traces. However, for a fixed input xPj

and x, we computed the cross
correlations between traces for xPj

λ2 and xλ2 computations. We thereby obtain

c
(0)
Pj

, and we repeat the process with other unknown λ. We then collect some

c
(n)
Pj

coefficients for each key hypothesis and subsequently compute an average
correlation coefficient for all hypothetical keys. This number n is further denoted
nP .

We subsequently repeat the method with other values of Pj covering another
portion of the data, and the secret is fully recovered.

5 Practical implementation of the collision attack against
point randomization

In this section, we report the practical results obtained when implementing our
collision attack. The experiments were carried in two stages. A first stage con-
sisted in testing the feasibility of detecting collisions, at word level, on our 32-bit
target device. In the second stage, we implemented our attack on a Pairings im-
plementation integrating Jacobian point randomisation countermeasure.

5.1 Preliminary characterization of collision detection on our target
device

The targeted device is an ARM Cortex M3 processor working on 32-bit registers.
We implemented the representative target operations over 32-bit integers:

– xPj × λ2,
– x× λ2.
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Fig. 2. An example of electromagnetic emanation measurement. © [19]

As source of side channel information, we use the ElectroMagnetic (EM)
waves emitted by the chip during the targeted calculations. This technique does
not need any depackaging of the chip and allowed to have “local” measurements
when precisely positioned on top of the die. The electromagnetic emanation
(EM) measurements were done using a Langer EMV-Technik LF-U 5 probe
equipped with a Langer Amplifier PA303 BNC (30dB). The curves were collected
using a Lecroy WaveRunner 640Zi oscilloscope. The acquisition frequency of the
oscilloscope is 109 samples per second. The EM measurements acquisition is done
as in Algorithm 4.

Algorithm 4: EM measurements acquisition procedure.

Data: nP , the repetition number
Result: A data base of EM measurement R ∈M256,nP ,2t, t is the traces

length

1 for j = 0 to 255 do
2 xj ← (0 . . . 0j7j6 . . . j0)2; // j = (j7 . . . j0)2 in radix 2 representation

3 for i = 0 to nP − 1 do
4 λ← random in {0, . . . , 232 − 1};
5 Execute the routine: computation of xj × λ2, x× λ2;
6 Store the EM measurement in R[j, i]

7 end

8 end
9 return R;

As a result, in one EM measurement there are two multiplications. An example
of such a trace is given in Figure 2.

The choice of EM leakages source is justified by the fact that the device un-
der test is not appropriate for acquiring power consumption. Indeed, the device
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has many power sources and grounds, so if we want to keep the power consump-
tion, the choices of them is not so simple, and can be a combination of several
sources/grounds. The other reason is linked to the practical equipment to make
the power consumption attack. A resistance should be placed on the source or
on the ground, then there is a risk of damaging the circuit. The EM equipment
is just a probe to place over the integrated circuit. Furthermore, in the case of
our device, it is not necessary to depackage to integrated circuit, then there is
no dangerous manipulation of the circuit.

At the end of Section 4.3 we introduced the theoretical technique to distin-
guish the good key when the correlation coefficient is used to detect collisions.
This naive method consists in comparing two traces by cross correlation for each
couple xPj × λ2 and x× λ2, and computes a coefficient for each key hypothesis
(denoted by xPj ) by averaging the correlation over the nP repetitions.

We used this method with our EM measurements by using the correlation
criterion. The attack succeeds if the maximal value for the collision detection
criterion is reached when xPj

= x. Then we can classify the key candidates (on
8 bits) according to their criterion values. The keys are now ranked from the
most to the least probable, the position of the correct secret key is called the
“key ranking”. The key ranking is a value between 1 and 256, it is worth 1 if the
attack succeeds in recovering the secret’s least significant byte.

Figure 3 shows that the key ranking slightly decreases with the number of
traces used for the attack.
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Fig. 3. Results for a naive collision attack.
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The method does not provide convincing results with the 256× 300︸︷︷︸
nP

traces.

However, the shape of the curve in the Figure 3 is decreasing. If the decrease is
approximatively linear, the good secret key will begin to be distinguishable from
nP ≈ 1000 traces. Nevertheless, this number is high, we will see in the following
paragraph how we managed to decrease this value.

In this approach the comparison is horizontal. Indeed, the EM measurements
C1 and C2 are sampled over t points, the returned coefficient is the cross corre-
lation computed with the Pearson coefficient:

ρ (C1, C2) =
covariance(C1, C2)

σ(C1)σ(C2)
. (7)

The main drawback of this method is the need to perfectly align the traces
as the correlation coefficient largely depends on the adjustment of the traces’
position. The toy example in Figures 4 and 5 of EM measurement show the great
dependency between the coefficient correlation and the alignment of traces. This
small demonstration and our practical experiences convinced us to use another
collisions detection techniques.
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Fig. 4. Traces without retouching.
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Fig. 5. Shifted traces on 7 points sample.
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Due those lukewarm results we investigate another technique for detecting
collisions.

Advanced collisions detection The aim this time is to detect if there exists
a link in the EM measurements during the two targeted multiplications using
“vertical correlations” as initially proposed in [40].

Instead of comparing the traces between each other and giving a coefficient
that indicates whether there is a collision, it is a point-to-point comparison
(where each point is a temporal instant within each trace).

Figure 6 illustrates this principle. The left pattern corresponds to the multi-
plication xPj

× λ2 and the other one corresponds to the operation x × λ2. For
the sake of have “clear” pictures, Figure 6 only shows three traces (nP = 3).
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The trick proposed by Varchola et al. [40] to avoid the synchronization prob-
lem consists in the selection of a time instant in the first multiplication, a window
in the second one and drag the single vector on the window to compute t corre-
lations.

More precisely, for a fixed known input xPj , the collected EM measurements
are Rj ∈MnP ,2t as we have seen in Algorithm 4. The result R is like the matrix
in Equation 8.

Rj =




C
(1)
1,1 C

(1)
1,2 . . . C

(1)
1,t C

(1)
2,1 . . . C

(1)
2,t

C
(2)
1,1 . . . C

(2)
1,t C

(2)
2,1 . . . C

(2)
2,t

...
...

...
...

C
(nP )
1,1 . . . C

(nP )
1,t C

(nP )
2,1 . . . C

(nP )
2,t



. (8)

From there, the attacker builds a “correlation trace” corrj ∈ M1,t for a
chosen time instant tinterset with corrj defined in Equation 9.

corrj(i) = ρ







C
(1)
1,tinterest

...

C
(nP )
1,tinterest


 ,




C
(1)
2,i
...

C
(nP )
2,i





 ,∀i = 1, . . . , t (9)
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To illustrate the general shape of such a “correlation trace” we refer the
reader to Figure 7. For this example we make a toy example with nP = 100.

As in classical side-channel attacks, the highest correlation allows to identify
the most probable key (the thickest blue curve in Figure 8, with nP = 400).
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Fig. 7. Vertical correlation collision toy
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Practical results using the advanced collision detection In [40], the col-
lision attack’s success is supported by practical results. Their target is an 8-bit
hardware implementation on an FPGA, their board was designed especially for
the purpose of side-channel analyses. So, our experimental works are different in
several points (see Table 1).

Table 1. Difference between target and set-up.

Settings Varchola et al. [40] Our case

Device FPGA Microcontroller

Architecture size 8-bit 32-bit

Clock frequency 16.384 MHz 24 MHz

Sampling frequency 20 Gsps 10 Gsps

Side-channel source Power EM

The main difference is of course the target of evaluation, hardware in their
case and software in ours. Another important difference comes from the archi-
tecture as the attack targets the 8 least significant bits but the manipulated data
are on 32 bits with the device producing leakages related to the 32-bit manipu-
lated data. Therefore, unlike [40], our 256 keys hypothesis do not cover all the
possible sought secret value.

Hence the question is the following: the traces are from 32-bit manipulated
data, will the leakages be sufficiently meaningful to target only 8 bits at a time?
Our attack is a chosen plaintext attack because the xPj

have a particular shape,
indeed, xPj

= (00 . . . 0j7j6 . . . j0)2
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In our experimentation we chose nP = 400 and hence we have the attack
results presented in Figure 9. Each score is obtained by averaging the results for
100 attacks with different traces. These figures show the ranking of the correct
key (8 least significant bits) among the 256 possible ones. The guess is correct
when the rank equals to one. This ranking decreases with the number of traces
in a significant way.
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Fig. 12. Byte 4.

The attack recovers, the 8-bit key when the number of trace per key nP is
close to 400 (i.e. a total of EM measurement close to nP × 28 = 400 × 256 =
102400). The secret key can be easily discriminated in a small set of candidates,
resulting a huge loss of entropy.
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5.2 Recovering the full 256 secret bits integer with collisions

In order to recover the full secret point during the Tate pairing calculation
that we implemented and that we run on our 32-bit platform, we applied the
method described previously to the other bytes, within the same 32-bit word
first, and then for the other 32-bit words, in order to recover the full 256-bit
secret integer. The used BN curves to implement the Tate pairing are set for
t = 3FC0100000000000 (in hexadecimal).

Afterwards, the 8 least significant bits are fixed to the recovered byte and we
pursue with the following byte. The attack on the other bytes is very similar to
what has been described so far in the “advanced” technique. The known inputs
xPj

are different: they first “integrate” the 8 least significant bits recovered by the
first step of the attack as carried in the previous section. Let (x̂7x̂6 . . . x̂0)2 = x̂
be the 8 least significant bits recovered by the attack, then the chosen ciphertext
is xPj

= (00 . . . 0j7j6 . . . j0x̂7x̂6 . . . x̂0)2. Now, when j will have the same value
as the secret, there will be a collision not only on 8 bits but also on 16 bits. When
the 16 bits manipulated in the multiplications will be the same, the collision will
be easier to detect than when there were only 8 identical bits. Practical results
are provided in Figure 10.

It shows that the attack is easier as soon as the least significant bits are
known. With only nP = 300, the attack succeeds.

In the 32-bit word two bytes are still unknown. The same attack method
allows us to recover these 32 secret bits. To attack the other words of the integer
is not more complicated, everything relies on the proper understanding of the
multiplication algorithm. Practical results are provided in Figure 11 and Fig-
ure 12. Efficiency of these attacks is similar when the target is the byte 2. That
is about nP = 300.

The cost of carrying the attack Our targeted Pairings implementations
involve 256-bit length integer arithmetic. That is, since there are 8 words of
32-bit integer, then the previous attack needs to be performed 8 times. But, the
messages (xP ) are chosen, so we can construct such xP to recover the 8 words
at the same time. It is like a parallel process :

1. Setting the messages xPj
= [Xj,7, Xj,6, . . . , Xj,0] with the Xj,i 32-bit word

which are the xPj
of section 9 and capture the side-channel leakages.

2. For each i = 0, . . . , 7 make the attack to recover the 8 LSBs of each Xi.
3. Start again with the second least significant bits of Xi.

Thus, the attack to find the 256 bits does not require 8 times more traces
than the one we presented to recover 32 bits. There are 8 independent attacks,
but not 8 times more traces.

Thus, the number of traces required to break the xQ coordinates of the secret
input is:

E ' 28 (400 + 3× 300) ' 3.5× 105

To compare with the attack against the unprotected version, recent results [20]
show an attack with an averages of 200 traces to recover one word, so 8× 200 =
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1600 for the entire 256-bits secret integer. Then the countermeasure constrains
the attacker to achieve 200 times more power measurements. In our experiment,
one trace is acquired in an average of 0.4 second. Thus, the collision attack on
the protected implementation take 2 days to recover the secret xQ.

6 Conclusion

Several recent publications have addressed side-channel attacks against pairing-
based cryptography. The present paper provides an overview of the different
SCA schemes and a description of the countermeasures proposed to circumvent
such attacks. To the best of our knowledge, these countermeasures have been
proposed without any (theoretical or practical) security proofs. Our investiga-
tion thus constitutes the first critical analysis of the efficiency of one of these
countermeasures. We have shown that the countermeasure based on point ran-
domisation can be defeated using a collision-based side-channel attack. We also
propose a method for improving the number of required curves for our attack.
We have validated the feasibility of our attack against a pairing calculation which
has been protected using this countermeasure.

At this stage we can therefore recommend to also randomize the secret at the
beginning of the pairing. The randomization of Jacobian coordinates of the secret
implies the non-reportion of the operation between the mask and the secret, and
thus our comment on the collision is no longer valid. Moreover, to set the secret
in Jacobian coordinates implies that the equations of the tangent and of the line
are no longer in mixed coordinates (Equation 4). Then the generated overhead
is eight modular multiplications (three in the computation of the tangent and
five in the line).

Our analysis highlights the difficulty in devising countermeasures that protect
implementations of complex cryptographic functions such as pairings against
physical attacks. For such algorithms, tools should be developed to test whether
the randomness properties that are initially introduced into a pairing calculation
are sufficiently propagated across the entire computation, at least for as long as
the secret point is still involved in the calculation.

Finally, recent papers [25, 4, 29] show new improvements in the algorithms
used to solve discrete logarithm, in particular over BN curves. Those latter devel-
opments only require the redefinition of the Pairings’ parameters and key sizes,
in which case, in our opinion, our attack scenario would still hold as our attack
is independent of the choice of the curve.
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