
JCEN manuscript No.
(will be inserted by the editor)

Formal verification of
an implementation of
CRT-RSA algorithm

Maria Christofi ·

Boutheina Chetali ·

Louis Goubin ·

David Vigilant

Received: date / Accepted: date

Abstract Cryptosystems are highly sensitive to phys-
ical attacks, which leads security developers to design

more and more complex countermeasures. Nonetheless,

no proof of flaw absence has been given for any imple-

mentation of these countermeasures. This paper aims

to formally verify an implementation of one published
countermeasure against fault injection attacks. More

precisely, the formal verification concerns Vigilant’s CRT-

RSA countermeasure which is designed to sufficiently

protect CRT-RSA implementations against fault attacks.
The goal is to formally verify whether any possible fault

injection threatening the pseudo-code is detected ac-

cording to a predefined attack model.

Keywords fault attacks · frama-C · countermeasures ·
cryptographic implementation · formal verification ·
RSA-CRT

Maria Christofi
Gemalto, 6, rue de la Verrerie, 92447 Meudon sur Seine,
France

Versailles Saint-Quentin-en-Yvelines University
E-mail: maria.christofi@gemalto.com

Boutheina Chetali
Trusted Labs SAS, 5, rue du bailliage, 78000 Versailles,
France
E-mail: boutheina.chetali@trusted-labs.com

Louis Goubin
Versailles Saint-Quentin-en-Yvelines University
E-mail: louis.goubin@uvsq.fr

David Vigilant
Gemalto, 6, rue de la Verrerie, 92447 Meudon sur Seine,
France
E-mail: david.vigilant@gemalto.com

1 Introduction

Cryptographic implementations may be subject to phys-

ical attacks that disturb the execution of the embedded

code. These attacks aim to disclose sensitive informa-

tion or to force malicious behavior of the attacked code.
To protect the implementations against this kind of at-

tacks, countermeasures are designed, implemented and

tested using several attack scenarios. To increase the

level of confidence in the correctness of the countermea-
sure implementation, specific procedures of code review

and cross-review are used. This “manual” verification

procedure is itself error prone, and in some case its de-

gree of exhaustivity depends on the time-to-market of

the product.

The aim of this work is to provide the crypto-developer

with a verification procedure which will improve the

current process of correctness of the countermeasure
with more automation and confidence. An implementa-

tion verification procedure can be seen as a procedure

which takes as input an implementation (or a pseudo-

code) with the corresponding countermeasure and out-
puts a “yes” or “no” answer. A “yes” answer means that

the set of countermeasures present in the code is effi-

cient enough to detect every possible attack scenario,

according to a predefined attack model for the consid-

ered implementation, while a “no” answer means that
the developer has to improve this set in order to include

the missing scenarios.

To the authors’ knowledge, the formal verification
of implementations of countermeasures has not really

been the subject of research until now. Several works

have been done on the formal verification of cryptosys-

tems, but generally focused on the correctness of the

cryptographic protocol with respect to its specification
(like [2]) and more recently to its implementation.

Indeed, such verification increases confidence in the

cryptographic implementation and excludes flaws due
to the weaknesses of the countermeasures.

The goal of this work is to demonstrate the ro-

bustness of the countermeasure with respect to a given
attack model. For that, a classical approach consists

in proving that an abstract model of the implemen-

tation with its countermeasure verifies a set of proper-

ties. Then using one of the existing approaches (empiri-

cal method, code generation, computational method) to
convince the developer that the verified abstract model

is a correct abstraction of the original code. The ap-

proach we take is to follow the developer view, using

the source code of the cryptosystem with its counter-
measures. For that, we will use a static analysis based

tool which takes the pseudo-code as an input to the

formal verification. Moreover, we will focus on a well-

2 Maria Christofi et al.

known cryptosystem, RSA, and more precisely the algo-

rithm associated to Vigilant’s countermeasure provided

in [23].

Attacks based on information gained from the phys-

ical implementation of a cryptosystem, other than brute
force or theoretical weaknesses in the algorithms, are

called side channel attacks. Attacks are typically distin-

guished in passive (such as timing information, power

consumption and electromagnetic leaks) and active (such

as fault injection) attacks.

This paper considers only fault injection attacks and

more precisely single fault injection attacks, i.e. attack

scenarios where only one fault is injected. However, the

method presented in this paper can be extended to mul-

tiple fault injection attacks.

Structure of the paper

In Sect. 2, fault attacks and some of the CRT-RSA

countermeasures are reminded. Then the general idea of

Vigilant’s countermeasure is briefly presented in Sect. 3.

Section 4 describes our methodology to formally ver-

ify an implementation of a countermeasure and then
Sect. 5 presents the formal verification of the pseudo-

code of Vigilant’s countermeasure as well as its results.

2 Fault attacks and countermeasures on

CRT-RSA

This Section is a short introduction to fault injection
attacks, and especially attacks targeting the CRT-RSA

algorithm.

2.1 Fault injection attacks

Fault attacks consist in tampering with a device in or-

der to have it perform some erroneous operations, hop-

ing that the result of that erroneous behavior will leak
information about the involved secret parameters.

The fault attacks in a specific code can be seen ei-

ther as modifications of a specific variable or as mod-

ifications of code instructions (including modifications

on the execution flow and logical level modifications).
The former one concerns attacks that aim to trouble

on the value of a register, while the later one concerns

attacks on the instructions of the code. In [4], Bar-El

and al. present various methods to induce faults and
exploit such errors, and give several examples of both

attacks and countermeasures.

Modifying a variable with a fault injection can be

seen as adding new instructions that assign an arbitrary

value to this variable. In the same vein, modifications of

code instructions are simulated by a goto instruction.

Formalizing modifications of instructions requires the

formalization of the program execution, and this will be

part of a future extension of this work. A first attempt
to model this kind of modifications, and especially the

jump attacks, one can find in [6].

The methodology proposed in Sect. 4 aims to guar-
antee the validity of a countermeasure pseudo-code where

the effect of the attack is the value modification of a

variable.

Therefore, the level of the details provided in the

pseudo-code is relevant with respect to the formalism.

For example, the result of a formal verification can

be different for a pseudo-code where the smallest ma-
nipulated variables are large integers, compared to a

pseudo-code where the smallest variables are arrays of

bits (or words) in a lower-level implementation. Indeed,

the second pseudo-code would contain more steps in-

cluding all multi-precision integers operations. These
extra steps would represent more locations for fault in-

jections. Therefore the formal verification should be ap-

plied to a pseudo-code as fine as possible, in order to

give the best confidence.

A fault can then be characterized by different as-

pects, like the number of affected bits, but also error

location, time of occurrence and persistence. The dif-
ferent fault models are summarized in Table 1.

2.2 Countermeasures on CRT-RSA

Focusing now to the CRT-RSA algorithm, as a signing

procedure and some already known countermeasures
used to protect it.

Let N = p · q be a product of two large prime num-

bers. To sign a message m, one first computes Sp = md

mod p and Sq = md mod q and then uses the Chinese

Remainder Theorem (CRT) to build the signature S =

md mod N (this is done by computing S = (Sp ·q·(q−1

mod p) + Sq · p · (p−1 mod q)) mod N).

CRT-RSA is especially susceptible to software or

hardware errors. Boneh, DeMillo and Lipton were the

first to present a fault attack on RSA in both standard

and CRT mode [7]. In the case of the CRT-RSA algo-
rithm, if a fault is induced during the computation of

Sp (respectively Sq), then an erroneous value S′
p (resp.

S′
q) is used during the CRT-recombination leading to an

erroneous signature S′. As S ≡ Sp mod p and S ≡ Sq

mod q, we now have S′ ≡ S mod q (resp. S′ ≡ S

mod p), but S′ 6≡ S mod p (resp. S′ 6≡ S mod q).

Therefore, if p ∤ (S − S′) then the secret parameter

Formal verification of an implementation of CRT-RSA algorithm 3

Table 1: Fault models

Precise Bit Single Bit Byte Random Arbitrary

Fault Model Fault Model Fault Model Fault Model Fault Model

control on complete loose loose loose loose/no
location (chosen bit) (chosen variable)
control on precise no no no no
timing

number of 1 1 8 random random
affected bits
fault type bit set or reset bit flip random random unknown
persistence permanent permanent permanent permanent permanent

and transient and transient and transient and transient and transient

q can be easily obtained by computing gcd(S − S′, N).

The other secret parameters of the private key p, dp(=
e−1 mod (p − 1)), dq(= e−1 mod (q − 1)), iq(= q−1

mod p) can then easily be computed.

An improvement of this attack comes later on by

Lenstra in [19]. He claims that if a fault is induced
during the computation of Sp then S′e ≡ m mod q

but S′e 6≡ m mod p. Therefore the secret parameter

q can be obtained by computing gcd(S′e −m,N). The

advantage of this attack comparing to the previous one

is that now only one execution of the cryptographic
algorithm is required to recover the private key.

However, for the above attacks, the attacker needs

to know the whole message. Some efforts have already

been done for attacks without the need of knowing it.
As for example, the one of Coron and al. in [12].

An obvious countermeasure against these attacks is

to verify the signature by using the public key (e,N).

Usually e is small (for example 216+1), but this method

may be very costly when e is large as it implies a second
exponentiation. Moreover, the public exponent is not

always available.

Since the publication of this attack, a large variety of

countermeasures have been published in the field. The

first method was proposed by Shamir in [22]. Shamir
suggests to choose a small integer r, then compute Spr =

md mod pr and Sqr = md mod qr and ensure the in-

tegrity of these two exponentiations by testing whether

Spr ≡ Sqr mod r before combining Spr and Sqr with
the CRT formula. However, Aumüller and al. in [3] show

that this method does not protect the CRT recombi-

nation and propose an implementation that also pro-

tects the CRT recombination. As opposed to Shamir’s

method, only dp and dq (and not d) are required. This
solution gives good performance, as comparing to the

classical CRT-RSA implementation, only two extra ex-

ponentiations and a few modular reductions are re-

quired. The main disadvantage of this method: it re-
quires an extra prime parameter. There are already

many improvements of Shamir’s method, such as the

one proposed by Vigilant in [23]. After some flaws dis-

covered, [11] presents an improvement of this algorithm

giving two possible attacks and the corresponding coun-
termeasures. The first attack concerns a fault that changes

the last “mod N” operation, while the second one con-

cerns the way that p−1 (resp. q−1) is computed/stocked.

The first attack does not apply to the case of our model
(due to the impossibility of implementing a “mod 0” op-

eration, see later on for more details about the model

used). The second attack demands a different imple-

mentation than the one presented in the original pa-

per [23].

Another protection has been proposed by Giraud

in [15] in which the fault detection comes from the ex-

ponentiation algorithm. Actually, by using the Mont-

gomery powering ladder to compute md mod N , both
values md mod n and md−1 mod N are available at

the end of the computation. These values can then be

used to verify the integrity of the exponentiation. In [8],

Boscher and al. also proposed a countermeasure where

the detection comes from another exponentiation al-
gorithm. Finally, Rivain proposed a detection method

based on addition chains in [21].

Examples of pseudo-codes for implementing the coun-

termeasures were only provided by Aumüller and al.
in [3] and by Vigilant in [23]. This paper studies the

pseudo-code provided by Vigilant. As said in Sect. 1,

the results of our method are specific to the implemen-

tation verified and can be different for different imple-
mentations of the same algorithm. As we want to verify

the original implementation of Vigilant’s countermea-

sure against fault attacks, we will not take into account

the modifications provided in [11].

3 Vigilant’s CRT-RSA countermeasure

Vigilant’s countermeasure is a method to protect a mod-

ular exponentiation against fault attacks. This method
can be efficiently used for protecting CRT-RSA on em-

bedded devices, since it does not require the public ex-

ponent, neither precomputation, nor extra parameters.

4 Maria Christofi et al.

Protecting an exponentiation S = md mod N against

fault attacks consists in computingmd mod N in ZN ·r2

where r is a small random integer co-prime with N . The

message m is transformed into m′ such that:

m′ ≡

{

m mod N

1 + r mod r2

This implies that

S′ = m′d mod Nr2 ≡

{

md mod N

1 + d · r mod r2

So, a consistency check of the result S′ can be per-

formed modulo r2 from d and r. If the verification S′

mod r2 = 1 + d · r mod r2 is successful, then the final

result S = S′ mod N is returned.

This secure exponentiation can be applied to RSA
with CRT. The principle is to perform two exponenti-

ations modulo p · r2 and q · r2 (so we obtain Sp and

Sq respectively) and then perform a final consistency

check after recombination, guaranteeing that no error

occurred during the computation of Sp or Sq and during
the recombination.

Algorithm 1 presents the pseudo-code of Vigilant’s

implementation as provided in [23].

This implementation has many advantages:

– no need of special hypotheses for r. However, in [23]

we can find some recommendations about r, such
that iq 6= 0 mod r, r should be odd, at least a 32-

bit random integer and as large as possible

– no precomputation is needed

– only p, q, dp, dq, iq, and m are needed for the calcu-
lation

4 Formal verification of implementations of

countermeasures

The aim of this work is to formally verify the resistance

of the pseudo-code described in Algorithm 1 against

fault attacks. The goal is to build a formal environment

that will allow the cryptographic engineer to introduce

his secure code and check the validity of his counter-
measure. The main steps of the verification procedure

to follow are:

1. define the implementation that we want to verify
with the corresponding set of countermeasures

2. choose a fault model

3. simulate every possible injected fault with respect

to this fault model
4. inject this fault model to the original source code

implementation

5. model the property corresponding to the verification

Algorithm 1 Vigilant’s CRT-RSA implementation

code

1: Input: message m, e, key (p, q, dp, dq, iq)
2: 32-bit random integer r

3: 64-bit random integers R1, R2, R3, R4

4: Output: signature S = md mod N

5: p′ = p · r2

6: mp = m mod p′

7: ipr = p−1 mod r2

8: βp = p · ipr
9: αp = (1− βp) mod p′

10: m̂p = (αp ·mp + βp · (1 + r)) mod p′

11: if (m̂p 6= m mod p) then return error
12: d′p = dp +R1 · (p− 1)

13: Spr = m̂
d′p
p mod p′

14: if (d′p 6= dp mod (p− 1)) then return error
15: if (βp · Spr 6= βp · (1 + d′p · r) mod p′) then return error
16: S′

p = Spr − βp · (1 + d′p · r)− R3

17: q′ = q · r2

18: mq = m mod q′

19: iqr = q−1 mod r2

20: βq = q · iqr
21: αq = (1− βq) mod q′

22: m̂q = (αq ·mq + βq · (1 + r)) mod q′

23: if (m̂q 6= m mod q) then return error
24: if (mp mod r2 6= mq mod r2) then return error
25: d′q = dq +R2 · (q − 1)

26: Sqr = m̂
d′q
q mod q′

27: if (d′q 6= dq mod (q − 1)) then return error
28: if (βq · Sqr 6= βq · (1 + d′q · r) mod q′) then return error
29: S′

q = Sqr − βq · (1 + d′q · r)− R4

30: S = S′
q + q · (iq · (S′

p − S′
q) mod p′)

31: N = p · q
32: if (N · [S − R4 − q · iq · (R3 − R4)] 6= 0 mod Nr2) then

return error
33: if (q · iq 6= 1 mod p) then return error
34: return S mod N

6. use a tool to generate some proof obligations corre-

sponding to the property to prove

7. prove these obligations (either automatically or us-

ing a proof assistant)

For the verification part of our work, we use a static

analysis based tool, named frama-C [14], that will al-

low to perform an analysis of the source code without
executing it. The source code will then correspond to

the implementation of the cryptosystem with its coun-

termeasures along with a simulation of the chosen fault

model.

4.1 Frama-C

Frama-C [14] is an open source extensible platform ded-
icated to source code analysis of C software. The frama-

C platform gathers several static analysis techniques

into a single collaborative extensible framework. The

Formal verification of an implementation of CRT-RSA algorithm 5

collaborative approach of frama-C allows static analyz-

ers to build upon the results already computed by other

analyzers in the framework.

In addition, frama-C verifies some “safety proper-

ties” like the division by zero or loop’s termination and

correctness.

One of the advantages of frama-C, against other
tools of static analysis or even bug-finding tools, is that

it allows its user to manipulate functional specifica-

tions, and to prove that the source code satisfies these

specifications written in a dedicated language ACSL

[1] (ANSI/ISO C Specification Language, a behavioral
specification language for C programs). ACSL is a lan-

guage of annotations, threatened as standard comments

by the C compiler, that allows the user to express the

above specifications in such a way that they do not af-
fect a normal execution of the implementation but they

are verified by frama-C.

Frama-C is a plugin system. In order to perform

a verification, we use Jessie [17], the deductive veri-

fication plugin of C programs annotated with ACSL.

It uses internally the languages and tools of the Why
platform [24] 1. The Jessie plugin uses Hoare-style [16]

weakest precondition computations to formally prove

ACSL properties. The generated verification conditions

can be submitted to external automatic provers such as
Simplify, Alt-Ergo, Z3, CVC3.

For more complex situations, interactive theorem

provers, like Coq, PVS, Isabelle/HOL, can be used to

establish the validity of the verification conditions.

The aim of the work presented in this paper is the

verification of a C code including a cryptographic im-

plementation and a simulation of all possible fault at-
tack scenarios. For this, Jessie needs as input this trans-

formed code and outputs the proof obligations to verify

using an automatic or an interactive prover. The user

is then free to exploit these results.

4.2 Fault model

As this is a first attempt to formally verify a crypto-

graphic implementation, we have chosen a quite simple
fault model which is still realistic, but different from

the one described in [23]. The two models are clearly

not equivalent. However, the verification procedure is

still the same for other models and this extension will
be part of our future work.

In the original fault model, the attacker can:

1 WHY is a general-purpose verification condition genera-
tor, which is used as a back-end by other verification tools but
which can also be used directly to verify programs. WHY pro-
duces verification conditions from annotated programs given
as input.

– inject only one fault per execution

– modify a value in memory obtaining a totally ran-

dom result uncorrelated to the original value (known

as permanent fault)

– modify a value when it is handled in local registers,
without modifying the global value in memory. The

handled value obtained is fully random from the at-

tacker point of view and uncorrelated to the original

value (known as transient fault)

but the attacker cannot:

– modify the code execution. Processor instructions

cannot be replaced or removed while executing code

– inject a permanent fault in the input elements, the

message m or the key (p, q, dp, dq, iq)

– change the boolean result of a conditional check. An
expression “if a = b” has a result true or false that

cannot be modified.

Our fault model is based on the above with three dif-
ferences. We consider that the attacker :

– can modify the value in memory but by only setting

the value to 0 (in the case of the pseudo-code, this
corresponds to set the whole variable to 0)

– can inject a permanent fault in the input elements,

the message m as well as the key (p, q, dp, dq, iq)

– cannot inject a fault in m at the very beginning (i.e.
before line 1 of the Algorithm 1) of the implemen-

tation.

4.3 Fault injection simulation

Once the fault model is defined, it must be injected in

the initial code of the implementation. This simulation

consists in setting the value of the “attacked” variable

to 0, for every possible fault (with respect to variable’s

location). Obviously such a modeling creates a lot of
cases to verify. The number of the cases increases ac-

cording to the number of the code instructions and the

variables used in it. Thus, for codes that describe real

cryptographic implementations, this modeling may be-
come very huge and so, quite inefficient.

For that we introduce an optimization by defining

some equivalence classes between attacks that have the

same effects. To do so, we use the notions of read and

write for any variable used in the code. The general
idea is to characterize every line of the original code

by a read, write, read/write, ∅ type according to the

actions occurred to the variables appeared in it. The

read (resp. write) type means that the considered code
line reads (resp. writes) the variable. The read/write

type means that the code line performs a read and a

write operation (as for example, for the variable var in

6 Maria Christofi et al.

the instruction var = var + 1). The ∅ means that no

operation is performed concerning this variable.

Definition 1 Let i be the number of the line and var
the variable that we want to check, then Type(var,i)

define this characterization for the variable var on line

i.

We then determine the next use of a variable var with
the help of the following definition.

Definition 2 Let consider a m-line code for our imple-
mentation, i the line of the code that we want to test

and var the name of the variable that we want to verify.

Then,

NextType(var, i) =

















Type(var, j) , where j is the
minimal value,

greater than i

such that

T ype(var, j) 6= ∅
∅ , if i = m

The different types are illustrated in a simple exam-
ple in Table 2.

Attacks on code with sequential control flow.

To simplify, let’s first focus to a code without any loops

nor conditionals. For such a code, the equivalence classes

correspond to the minimal code to verify in order to en-

sure a security property. In fact, the class of the original
source code includes all the attacked codes for which the

attack is useless. Formally, we have:

Lemma 1 If NextType(var, i) ∈ {write, ∅}, then an

attack on var injected at line i is useless and equivalent

to the original source code.

Obviously, if the next use of var is “write”, the op-
eration performed will have no effect to the value of var

stored in memory. Contrary to the cases that the next

use of var is “read” or “read/write” where the following

lemma is applied:

Lemma 2 If NextType(var, i) ∈ {read, read/write}
and j the line that represents the next use of the vari-

able var, then an attack on var injected at the interval
[i, j] has exactly the same effect on var than an attack

injected at line j, but has no effect between lines i and

j − 1.

The aim of these two lemmas is to separate the use-
ful attacks from the useless ones, i.e. the attacks that

have an effect on the code from the ones that have no

effect. It reduces the number of the attacks so that only

useful attacks are kept. These two lemmas are summa-

rized to the following theorem (we recall that for the

moment we have a code with no loop and no condition-

als):

Theorem 1 If there are n read and read/write opera-

tions on the code for one variable, the minimal number

of faults with different effect for this variable is n + 1

(i.e. one attack for every read and read/write operation
plus the original code-without faults injection).

Attacks on code with conditionals and loops.

Let us now consider the case of a source code with con-
ditionals and loops. The type of any line can be defined

in the same way as for any other line of a non condi-

tional code, thus Lemma 1 remains valid.

We first deal with the conditional instructions (an

if-then-else structure). This part of code can be decom-

posed in three parts: the condition, the then-block and

the else-block (which can be empty). It is possible to
inject attacks at either the condition or the then/else-

block.

As in the case of code with sequential control flow,
we inject an attack before any read operation of every

variable.

However, as we want to minimize the number of in-
jected attacks, if no read operation happens during the

if-condition and a read operation happens in both the

then and the else block, instead of injecting an attack

at both corresponding lines, we can inject an attack
before the if-condition when no operation is performed

between the if-condition and both these reads. An ex-

ample is given in Fig. 1. This can be done only in the

case of fault models where the fault is always of the

same nature. An example of this kind of fault model is
the one studied in this paper, which consists on setting

a value to 0. An example of fault model that we cannot

apply this optimization is the fault model which sets

a value to a random value. This is because every fault
injection can correspond to another random value.

1: int example if(int x, int y){
2: if (y > 0) // condition
3: {y = x; } // then-block
4: else y = −x; // else-block
5: return y;
6: }

Fig. 1: Code example with conditionals (considering

attacks on variable x). For the fault model consisting
on setting a value on 0, instead of injecting two

attacks in both lines 3 and 4, we can inject one and

only attack in line 2.

Formal verification of an implementation of CRT-RSA algorithm 7

Table 2: Code example

1: int example(int a, int b){
2: int x = 0; // Type (x,2) = write On line 2, the use of x is of type

“write”.
3: a = a + 1; // Type (a,3) = read/write On line 3, the use of a is of type

“read” and “write”.
// NextType (x,3) = write On line 3, the next use of x is of

type “write” (on line 4).
// NextType (a,3) = read On line 3, the next use of a is of

type “read” (on line 4).
4: x = a + b; // NextType (x,4) = ∅ On line 4, there is no next use of x.
5: }

In the same vein, for the loop instructions, we inject

an attack before any read operation of every variable.

4.4 Adding the fault model to the implementation

Before starting the verification, the simulated fault model

will be added to the original code. For that, an addi-

tional variable is used, named f , which represents the

faults. All possible attacks are finally introduced in such
a way that this part of code will be executed once the

corresponding simulated attack occurs.

As an example, one can see Figure 2. In this exam-

ple, a fault consists on setting the value of a variable

to 0. The lines 1, 6, 11 and 12 of the transformed code
are equivalent to the initial code, while both the lines

3 and 8 represent attacks to the variable x, and lines 4

and 9 attacks to the variable y. Lines 2 to 5 describe all

possible attacks for the instruction at the line 6, while
lines 7 to 10 describe all possible attacks for the return

statement at line 11.

Similarly, all possible attacks (w.r.t. the fault model)

can be simulated and induced into the original code.

The automatic generation of this simulation and its in-
jection into the original code is already implemented

(even if some improvements are still necessary).

4.5 Modeling the main property

The goal of the verification is to prove, for a given imple-

mentation, the validity of a set of countermeasures with

respect to a set of attacks (for a given attack model).

In other words, given an implementation and a set of

countermeasures, we want to prove whether any attack
by fault injection (w.r.t. the attack model) is detected

(an error flag is raised).

For the fault model studied in this paper, this means

that the output of any execution of the given code is
either the expected result or the error flag. As we cannot

know in advance the expected result, we have to express

it in terms of a function using the entry variables. The

property to prove is then summarized to the Theorem

2.

Theorem 2 Let f ∈ {0} ∪ F , where F is the set of

faults for the current implementation and f = 0 the

original execution of the implementation (without in-

jected faults). Let also res be the output of the imple-
mentation, x1, ..., xn be the n variables of the input of

the implementation and g a function. Then :

[(f = 0) ⇒ (res = g(x1, ..., xn))] AND

[(∀f ∈ F) ⇒ ((res = ERROR) OR (res =
g(x1, ..., xn)))]

When the output is the error flag, it means that
the countermeasures are robust in the sense that they

detect any fault injection (according to the model).

The second part of the above equation may be changed

according to the chosen fault model. That is because if

we use a fault model where we know the effect of the
fault, for example a fault model that set the value of

a variable to 0 or to a known constant, the valid re-

sult at the end of the execution will give us the correct

value of this variable, and so, this fault witnesses the

real value of a variable (which can also be a secret vari-
able). Whereas a fault model that we do not know the

effect of the fault, like a fault model that set the value of

a variable to a random value unknown to the attacker,

a valid result at the end of the execution will witness
nothing, as we would not know the faulty value. So, in

the first case, we need to ensure the whole property,

while in the second one, a fault is detected when the

error flag is up.

5 Formal verification of the pseudo-code of

Vigilant’s countermeasure

The following section describes the use of the presented
approach to the pseudo-code of Vigilant’s countermea-

sure. The verification is based on the procedure de-

scribed in Sect. 4.

8 Maria Christofi et al.

1: int example(int x, int y, int f){

2: x = y;

3: return x;
4: }

(a) initial code

1: int example(int x, int y, int f){
2: switch(f){
3: case 1 : x = 0; break;
4: case 2 : y = 0; break;
5: }
6: x = y;
7: switch (f) {
8: case 3: x = 0; break;
9: case 4: y = 0; break;
10: }
11: return x;
12: }

(b) transformed code

Fig. 2: An example of a fault injection in the code

As described in Sect. 4.2, the fault model we use is

the following:

An attacker can:

– inject only one fault per execution

– modify the value in memory by setting the value to

0
– inject both transient and permanent faults to any

variable

but (s)he cannot:

– modify the code execution

– inject a fault in m at the very beginning (that is

before line 1 of the Algorithm 1) of the implemen-
tation.

– inject a fault in S at the very end (i.e. after line 31

of the Algorithm 1) of the implementation

– change the boolean result of a conditional check. An
expression “if a = b” has a result true or false that

cannot be modified.

For the pseudo-code of Vigilant’s CRT-RSA algorithm

presented in [23], under the above assumptions and us-

ing the procedure described in this paper, 95 possible
faults are obtained. These faults are presented in the

Appendix A.

Some additional hypotheses have to be made:

– m mod p 6≡ 0 and m mod q 6≡ 0

– r is odd and iq 6≡ 0 mod r as it is recommended

in [23]
– gcd(p, r2) = 1 and gcd(q, r2) = 1, for the efficiency

of the computation of ipr and iqr respectively

Once every possible fault is injected using the method

described in Sect. 4 and with respect to the above fault

model, we call the frama-c platform with the jessie plu-

gin to run the verification procedure of the property of
Theorem 2.

The results of this verification indicate some cases

of faults (the underlined cases in Algorithm 2 of Ap-

pendix A) that are not detected by the given counter-

measures.

“Sensitive” cases are separated in three main categories:

– The first category contains cases with success prob-
ability one (that means that such a fault will never

be detected). These cases (cases 19, 36, 60 and 77

in Algorithm 2) correspond to faults on the random

values R1, R2, R3 and R4 and concern the random-
ization of some variables. In these cases, the output

is the real signature and no information about the

secret values is obtained. Hence, these cases are of

a real interest as we can expect the same behavior

whenever a random value appears. However, when-
ever we obtain the valid signature, the attacks pre-

sented in Sect. 2.2 are no more applicable. (Depend-

ing on the fault model this can give some informa-

tion to the attacker about the attacked variable)
– The second (and the bigger) one contains cases with

a weak success probability. (Noting |x| the size of x)
- For the cases 6, 8, 13, 27, 29, 33, 34, 41, 44,

46, 51, 68, 70, 74, 75, 79, 82, 87, 88 and 91, the

probability that an injected fault is undetectable
is 2−2|r|+1.

- For the cases 22, 28 and 32, this probability is

2−(|p′|−1)ln2.

- For the cases 63, 69 and 73, this probability is
2−(|q′|−1)ln2.

We notice here that frama-C tool cannot manipu-

late probabilities. The probabilities mentioned here

are manually calculated (see Appendix B for more

details).
– The last category contains cases with a high success

probability (in this case 1) and where the output

is a faulty signature. These are the most danger-

ous cases as we can extract information about the
secret values. These cases are: 18 and 59 and corre-

spond to permanent faults on dp and dq during the

computation of d′p and d′q respectively. In case 18

Formal verification of an implementation of CRT-RSA algorithm 9

(respectively 59), we obtain a faulty signature mod-

ulo p (resp. modulo q) and the right one modulo q

(resp. modulo p). So it will be easy for the attacker

to compute q (resp. p) and then the other secret

parameters. Indeed as already said, our fault model
allows permanent faults on dp and dq, contrary to

the original fault model. This fault model difference

is of prime importance for our results here.

6 Related work

To our knowledge, the use of frama-C for the verifi-

cation of countermeasures is novel, but other uses of

frama-C already exist. In [13], one can find the results

of a formal verification of source code of a model of

automaton in SAM language and its C language imple-
mentation, obtained using frama-C and Caveat. In [9],

one can find a formal proof of correctness of the key

commands of the SCHUR software, which is an inter-

active program for calculating with characters of Lie
groups and symmetric functions. Another example of a

use of frama-C is [5] which is about verification of some

interval security properties for smart card C codes using

value analysis.

Other verification techniques, such as model check-

ing, are also quite common to verify temporal proper-
ties in programs. In [18], such a verification concerning

safety properties can be found, while in [10], one can

find the results of a verification of a real system using

MOPS - a tool for software model checking security-

critical applications-. Although model checking is fully
automated, it is limited to simple implementations due

to the exhaustive exploration of the model.

Another remarkable effort on verifying programs with

the presence of faults is made in [20] (thank to the

anonymous reviewer for this citation), where the au-

thors have developed a new logic for reasoning about
faults.

7 Conclusion and perspectives

Vigilant’s countermeasure is a countermeasure protect-

ing modular exponentiations against fault attacks that
was applied to CRT-RSA. In this paper, we have pre-

sented the results of the formal verification of the re-

sistance of the pseudo-code provided in [23] against

fault attacks, with respect to the fault model described

above.

The obtained results are very promising. The ap-
proach has been developed with a simple fault model.

The goal now is first to evaluate the pertinence of this

fault model with the crypto-developers. Then, we plan

to extend this method to other fault models and to dou-

ble fault attacks. This work will continue along with

experimentations on other cryptographic countermea-

sures. More practical steps are also planned, such as

improving the automation in order to provide crypto-
developers with a full validation environment.

Acknowledgements The authors would like to thank Pascal
Paillier for his useful contribution to this work.

References

1. ACSL. http://frama-c.com/acsl.html

2. Aizatulin, M., Dupressoir, F., Gordon, A.D., Jürjens, J.:
Verifying Cryptographic Code in C: Some Experience and
the Csec Challenge. In: Formal Aspects of Security and
Trust - 8th International Workshop, FAST 2011, Leu-
ven, Belgium, September 12-14, 2011. Revised Selected
Papers, Lecture Notes in Computer Science, vol. 7140, pp.
1–20. Springer (2012)

3. Aumüller, C., Bier, P., Fischer, W., Hofreiter, P., Seifert,
J.P.: Fault Attacks on RSA with CRT: Concrete Results
and Practical Countermeasures. In: CHES, Lecture Notes

in Computer Science, vol. 2523, pp. 260–275. Springer
(2003)

4. Bar-El, H., Choukri, H., Naccache, D., Tunstall, M.,
Whelan, C.: The sorcerer’s apprentice guide to fault at-
tacks. IACR Cryptology ePrint Archive 2004, 100 (2004)

5. Berthomé, P., Heydemann, K., Kauffmann-
Tourkestansky, X., Lalande, J.F.: Attack model
for verification of interval security properties for
smart card C codes. In: Proceedings of the 5th
ACM SIGPLAN Workshop on Programming Lan-
guages and Analysis for Security, PLAS ’10, pp.
2:1–2:12. ACM, New York, NY, USA (2010). DOI
http://doi.acm.org/10.1145/1814217.1814219. URL
http://doi.acm.org/10.1145/1814217.1814219

6. Berthomé, P., Heydemann, K., Kauffmann-
Tourkestansky, X., Lalande, J.F.: Simulating physical
attacks in smart card C codes: the jump attack case. In:
e-Smart (2011)

7. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the impor-
tance of eliminating errors in cryptographic computa-
tions. J. Cryptology 14(2), 101–119 (2001)

8. Boscher, A., Naciri, R., Prouff, E.: CRT RSA Algo-
rithm Protected Against Fault Attacks. In: WISTP, Lec-
ture Notes in Computer Science, vol. 4462, pp. 229–243.
Springer (2007)

9. Butelle, F., Hivert, F., Mayero, M., Toumazet, F.:
Formal Proof of SCHUR Conjugate Function. In:
AISC/MKM/Calculemus, Lecture Notes in Computer Sci-

ence, vol. 6167, pp. 158–171. Springer (2010)
10. Chen, H., Dean, D., Wagner, D.: Model Checking One

Million Lines of C Code. In: NDSS. The Internet Society
(2004)

11. Coron, J.S., Giraud, C., Morin, N., Piret, G., Vigilant, D.:
Fault Attacks and Countermeasures on Vigilant’s RSA-
CRT Algorithm. In: FDTC, pp. 89–96. IEEE Computer
Society (2010)

12. Coron, J.S., Naccache, D., Tibouchi, M.: Fault attacks
against emv signatures. In: CT-RSA, Lecture Notes in

Computer Science, vol. 5985, pp. 208–220. Springer (2010)

10 Maria Christofi et al.

13. Duprat, S., Gaufillet, P., Lamiel, V.M., Passarello, F.:
Formal verification of SAM state machine implementa-
tion. In: Embedded Real Time Software and Systems
(ERTS’10) (2010)

14. frama-c. http://frama-c.com/

15. Giraud, C.: An RSA Implementation Resistant to Fault
Attacks and to Simple Power Analysis. IEEE Trans.
Computers 55(9), 1116–1120 (2006)

16. Hoare, C.A.R.: An axiomatic basis for computer pro-
gramming (reprint). Commun. ACM 26(1), 53–56 (1983)

17. Jessie. http://krakatoa.lri.fr/#jessie

18. Kupferman, O., Vardi, M.Y.: Model checking of safety
properties. Formal Methods in System Design 19(3),
291–314 (2001)

19. Lenstra, A.: Memo on RSA signature generation in the
presence of faults. manuscript (1996)

20. Meola, M.L., Walker, D.: Faulty logic: Reasoning about
fault tolerant programs. In: Programming Languages and
Systems, 19th European Symposium on Programming,
ESOP 2010, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2010,
Paphos, Cyprus, March 20-28, 2010. Proceedings, Lec-

ture Notes in Computer Science, vol. 6012, pp. 468–487.
Springer (2010)

21. Rivain, M.: Securing RSA against Fault Analysis by Dou-
ble Addition Chain Exponentiation. IACR Cryptology
ePrint Archive 2009, 165 (2009)

22. Shamir, A.: Improved method and apparatus for protect-
ing public key schemes from timing and fault attacks.
Patent number: WO9852319 (1998)

23. Vigilant, D.: RSA with CRT: A New Cost-Effective Solu-
tion to Thwart Fault Attacks. In: CHES, Lecture Notes in

Computer Science, vol. 5154, pp. 130–145. Springer (2008)
24. Why. http://why.lri.fr/

A Vigilant’s CRT-RSA implementation code

with fault simulation

Algorithm 2 Vigilant’s CRT-RSA implementa-

tion code with fault simulation

1: Input: message m, e, key (p, q, dp, dq, iq)
2: 32-bit random integer r

3: 64-bit random integers R1, R2, R3, R4

4: an integer f
5: Output: signature S = md mod N

6: switch (f) {
7: case 1 : p = 0
8: case 2 : r = 0
9: }
10: p′ = p · r2

11: switch (f) {
12: case 3 : p′ = 0
13: }
14: mp = m mod p′

15: switch (f) {
16: case 4 : p = 0
17: case 5 : r = 0
18: }
19: ipr = p−1 mod r2

20: switch (f) {
21: case 6 : ipr = 0
22: case 7 : p = 0
23: }
24: βp = p · ipr
25: switch (f) {
26: case 8 : βp = 0
27: case 9 : p′ = 0
28: }
29: αp = (1− βp) mod p′

30: switch (f) {
31: case 10 : αp = 0
32: case 11 : mp = 0
33: case 12 : p′ = 0
34: case 13 : βp = 0
35: case 14 : r = 0
36: }
37: m̂p = (αp ·mp + βp · (1 + r)) mod p′

38: switch (f) {
39: case 15 : m̂p = 0
40: case 16 : m = 0
41: case 17 : p = 0
42: }
43: if (m̂p 6= m mod p) then return error
44: switch (f) {
45: case 18 : dp = 0
46: case 19 : R1 = 0
47: case 20 : p = 0
48: }
49: d′p = dp +R1 · (p− 1)
50: switch (f) {
51: case 21 : d′p = 0
52: case 22 : m̂p = 0
53: case 23 : p′ = 0
54: }

Formal verification of an implementation of CRT-RSA algorithm 11

55: Spr = m̂
d′p
p mod p′

56: switch (f) {
57: case 24 : d′p = 0
58: case 25 : dp = 0
59: case 26 : p = 0
60: }
61: if (d′p 6= dp mod (p − 1)) then return error
62: case 27 : βp = 0
63: case 28 : Spr = 0
64: case 29 : d′p = 0
65: case 30 : r = 0
66: case 31 : p′ = 0
67: if (βp · Spr 6= βp · (1 + d′p · r) mod p′) then return error
68: switch (f) {
69: case 32 : Spr = 0
70: case 33 : βp = 0
71: case 34 : d′p = 0
72: case 35 : r = 0
73: case 36 : R3 = 0
74: case 37 : p′ = 0
75: }
76: S′

p = (Spr − βp · (1 + d′p · r)− R3) mod p′

77: switch (f) {
78: case 38 : q = 0
79: case 39 : r = 0
80: }
81: q′ = q · r2

82: switch (f) {
83: case 40 : q′ = 0
84: case 41 : m = 0
85: }
86: mq = m mod q′

87: switch (f) {
88: case 42 : q = 0
89: case 43 : r = 0
90: }
91: iqr = q−1 mod r2

92: switch (f) {
93: case 44 : iqr = 0
94: case 45 : q = 0
95: }
96: βq = q · iqr
97: switch (f) {
98: case 46 : βq = 0
99: case 47 : q′ = 0
100: }
101: αq = (1− βq) mod q′

102: switch (f) {
103: case 48 : αq = 0
104: case 49 : mq = 0
105: case 50 : q′ = 0
106: case 51 : βq = 0
107: case 52 : r = 0
108: }
109: m̂q = (αq ·mq + βq · (1 + r)) mod q′

110: switch (f) {
111: case 53 : m̂q = 0
112: case 54 : m = 0
113: case 55 : q = 0
114: }
115: if (m̂q 6= m mod q) then return error
116: case 56 : mp = 0
117: case 57 : mq = 0
118: case 58 : r = 0
119: }

120: if (mp mod r2 6= mq mod r2) then return error
121: switch (f) {
122: case 59 : dq = 0
123: case 60 : R2 = 0
124: case 61 : q = 0
125: }
126: d′q = dq +R2 · (q − 1)
127: switch (f) {
128: case 62 : d′q = 0
129: case 63 : m̂q = 0
130: case 64 : q′ = 0
131: }

132: Sqr = m̂
d′q
q mod q′

133: switch (f) {
134: case 65 : d′q = 0
135: case 66 : dq = 0
136: case 67 : q = 0
137: }
138: if (d′q 6= dq mod (q − 1)) then return error
139: case 68 : βq = 0
140: case 69 : Sqr = 0
141: case 70 : d′q = 0
142: case 71 : r = 0
143: case 72 : q′ = 0
144: if (βq · Sqr 6= βq · (1 + d′q · r) mod q′) then return error
145: switch (f) {
146: case 73 : Sqr = 0
147: case 74 : βq = 0
148: case 75 : d′q = 0
149: case 76 : r = 0
150: case 77 : R4 = 0
151: case 78 : q′ = 0
152: }
153: S′

q = (Sqr − βq · (1 + d′q · r)− R4) mod q

154: switch (f) {
155: case 79 : S′

q = 0
156: case 80 : q = 0
157: case 81 : iq = 0
158: case 82 : S′

p = 0
159: case 83 : p′ = 0
160: }
161: S = S′

q + q · (iq · (S′
p − S′

q) mod p′)
162: switch (f) {
163: case 84 : p = 0
164: case 85 : q = 0
165: }
166: N = p · q
167: switch (f) {
168: case 86 : N = 0
169: case 87 : S = 0
170: case 88 : R4 = 0
171: case 89 : q = 0
172: case 90 : iq = 0
173: case 91 : R3 = 0
174: case 92 : r = 0
175: }
176: if (N · [S −R4 − q · iq · (R3 −R4)] 6= 0 mod N · r2) then

return error
177: case 93 : q = 0
178: case 94 : iq = 0
179: case 95 : p = 0
180: if (q · iq 6= 1 mod p) then return error
181: return S mod N

12 Maria Christofi et al.

B Details concerning the success probabilities

of fault attacks

In this Appendix, we would like to give more details about the
computation of the probabilities presented in Sect. 5. Noting
|x| the size of x.

Assume that the attacker modifies valueA (A = B mod C)
and that C is a uniform, t-bit integer. We suppose that C is
odd (r is odd according to the recommendations in Sect. 5,
as well as p and q) and we force 2t−1 < C < 2t. Note S = {C :
2t−1 < C < 2t and C = 1 mod 2}.

We note U the event that the fault is undetected and F

the event of taking an element c in S s.t. c = C. So, Pr[U |F]
is the probability that an event is undetected assuming F .
Since the final result will depend only on the initial values
which are uniformly distributed (the only exception may be
the message m. To avoid this case, we can assume that the
message used is the message obtained after a padding - like
OAEP-. So the resulted m will also be uniformly distributed),
we know that:

Pr[U |F] =
1

C
and Pr[F] =

1

|S|

and then

Pr[U] =
∑

C∈S

(Pr[U |F] · Pr[F]) =
1

|S|
·
∑

C∈S

1

C

Let S = {C : 2t−1 < C < 2t and C = 0 mod 2}, the

∑

C∈S∪S

1

C
= [lnC]2

t

2t−1 = ln(2t)− ln(2t−1) = ln2

We consider approximately that |S| = |S|. Then:

Pr[U] =
1

|S|
·
∑

C∈S

1

C
≈

1

|S|
·
1

2
·

∑

C∈S∪S

1

C
=

1

|S|
·
ln2

2
=

1

2t−2
·
ln2

2
= 2−(t−1)ln2

This is the obtained probability for the faults: 22, 28 and
32 with t = |p′|, 63, 69 and 73 with t = |q′|.

Supposing now, that the attacker modifies a value A (A =
B mod C2). Following the same reasoning, we conclude that
:

Pr[U] ≈ 2−2t+1

This is the obtained probability for the faults: 6, 8, 13,
27, 29, 33, 34, 41, 44, 46, 51, 68, 70, 74, 75, 79, 82, 87, 88 and
91 with t = |r|.

