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Synonyms

– MPKC
– MQ
– Multivariate Quadratic Public-Key Cryptosystem (MQPKC)

Related Concepts

– Differential cryptanalysis
– Digital signature schemes
– Gröbner basis
– Post-quantum cryptography
– Public-key cryptography

Key words

– MQ problem (solving a system multivariate quadratic equations)
– IP problem (Isomorphism of polynomials)
– MP problem (Morphism of Polynomials)
– MinRank
– Polar form of quadratic equations over finite fields
– Functional decomposition

Definition

A Multivariate Public-Key Cryptosystem (MPKC) is a public-key cryptosystem
where the public map P, or trapdoor one-way function, is given as a set of m
polynomial of a small degree d equations over n variables in a finite field F .
Usually d = 2, hence the alternate name “Multivariate Quadratic” (MQ).

To decrypt, authenticate or sign digitally, a user must, for a given m-tuple
z = (z1, . . . , zm), find a solution for w = (w1, . . . , wn) the system

(P)


p1(w1, . . . , wn) = z1

· · ·
pm(w1, . . . , wn) = zm

.



For a digital signature, a challenge-response authentication scheme, and an
encryption scheme, z = (z1, . . . , zm) is respectively the hash of the message to be
signed, the challenge, and the ciphertext, while w = (w1, . . . , wn) is respectively
the signature of this message, the response, and the cleartext.

Anyone can easily verify whether a given pair (w, z) satisfies the system (P),
or compute z = P(w) from any given w. However, finding at least one solution
w = (w1, . . . , wn) of the system P should be difficult for most z = (z1, . . . , zm)
without the knowledge of a secret key, but easy with the knowledge of a secret
key. In other words, without the knowledge of a secret key, it should be infeasible
to decrypt a message, forge a signature successfully, or pass an authentication.

Background

In general, solving a set of quadratic equations over a finite field is NP-
hard (see computational complexity) for any finite field. This problem, known
as MQ, is even conjectured to be probabilistically hard, i.e. as m,n → ∞,
∀ε > 0, and for any probabilistic Turing Machine A, Pr(P(x) = y be solved by
A in poly(m,n)) < ε.

However, it is difficult to obtain a proof of security for multivariate schemes:
since the system (Q) has to be easy to solve, it is never random, and neither is
(P) which is obtained by linear changes of variables from (Q).

One can always try to solve the system of equations directly using system
solvers based on Gröbner bases (XL, F4, F5). For more or less “generic” or
“random” equations, most current methods take exponential time when m and
n are of the same size. Some systems appear very non-random under Gröbner
basis methods. Recently differential analysis techniques were applied to MPKCs
resulting in the break of the SFLASH system[?,?,?].

The first proposals of cryptosystems based on MQ date back to the early
1980’s, see Imai et al. [?], Matsumoto and Imai [?], Tsujii et al. [?], Matsumoto
and Imai [?].

Shor’s algorithm cannot be used to speed up solving MQ, so unlike the
RSA cryptosystem, elliptic curve cryptography and the digital signature standard
which are known to be breakable by quantum computers, MPKCs are a candi-
date for post-quantum cryptography.

There are variants in which more general systems of polynomials are used
with the w and z variables mixed (“implicit MPKC”), or where not all the
equations of the system (P) have to be valid, but only a given fixed percentage
(“probabilistic MPKC”). Some authors also include in the category of multi-
variate cryptography other schemes like the zero-knowledge schemes IP [?] or
MinRank [?]. These variants are not considered in this entry.

Theory

Typically, a multivariate scheme is built from an easy-to-solve system Q(x) =
y, the central map, which is then “hidden” by two secret random linear (or
affine) transformations S : w 7→ x and T : y 7→ z to obtain a new system (P),
by composing them (on the left and on the right) with Q. The system (P) is the



public key, the original system (Q) and the transformations S and T form the
secret key.

More precisely, if (Q) is given by m polynomials (q1, . . . , qm) in (x1, . . . , xn),
the new system (P) is given by m polynomials (p1, . . . , pm) in (w1, . . . , wn) as
in:

(p1, . . . , pm)(w1, . . . , wn) = T (q1(S(w1, . . . , wn)), . . . , qm(S(w1, . . . , wn)))

where S and T are secret random linear (or affine) bijective changes of variables.
The new system P := T ◦ Q ◦ S is also quadratic and finding a solution of

(P)


p1(w1, . . . , wn) = z1

· · ·
pm(w1, . . . , wn) = zm

for a given m-tuple (z1, . . . , zm) is expected to be difficult without the knowledge
of S and T . In the following, the system (P) will also be denoted by P(w) = z.

There exist several families of multivariate schemes, corresponding to sev-
eral choices for the system Q (some examples are given below). Some schemes
have been broken; for others, only generic Gröbner-basis attacks apply and the
parameters are chosen large enough to make those infeasible.

Variants (Perturbations)

In order to increase the security of an MPKC or to repair a broken scheme,
some variants or “perturbations” of the polynomials are often introduced, either
on the system (P) or on the system (Q). The most classical variants are denoted
+, ⊕, −, V and F .

+ : The public key of a “plus” variant is not given by the system of polynomi-
als (p1(w), . . . , pm(w)) but by (p1(w)+L1(R1(w), . . . , Rα(w)), . . . , pm(w)+
Lm(R1(w), . . . , Rα(w)), R1(w), . . . , Rα(w)), where L1, . . . , Lm are secret lin-
ear forms and R1, . . . , Rα are α truly random secret quadratic polynomials
in (w1, . . . , wn), with α� m.

⊕ : The public key is not given by the system of polynomials (p1(w), . . . , pm(w))
but by (p1(w)+R1(L1(w), . . . , Lα(w)), . . . , pm(w)+Rm(L1(w), . . . , Lα(w))),
where R1, . . . , Rm are m truly random secret quadratic polynomials, and
L1, . . . , Lα are secret linear forms, with α� m.

− : The “minus” variant consists in keeping secret some of the m polynomials
(p1, . . . , pm). Only m − β polynomials are made public and will be used to
check the validity of the equations.

V : In the “vinegar” variant—also called “extra variables perturbation”—α new
variables are introduced in the system (Q), and secretly combined with the
usual variables (w1, . . . , wn). This mixing is not always linear, but is such
that the new obtained system is still quadratic.

F : In the “fix” variant, the public key polynomials (p′1, . . . , p
′
m) are formed

by replacing α of the variables in (p1(w), . . . , pm(w)) by arbitrary linear
combinations in w = (w1, . . . , wn).



Applications

Among the most famous multivariate public-key schemes are C∗ by Mat-
sumoto and Imai [?,?]; HFE (Hidden Field Equations) by Patarin [?]; UOV (Un-
balanced Oil and Vinegar) by Kipnis, Patarin, and Goubin [?]; Rainbow/TTS
by Ding and Schmidt [?] and modified by Ding et al [?]; and IFS (Intermediate
Field System, nicknamed “chocolate bar”) by Billet, Patarin, Seurin [?].

Many other schemes have been presented by various authors from around
the world, but most of them have been broken. For a recent overview article see
Ding and Yang [?].

C∗ and SFLASH

C∗ [?] was originally designed by Matsumoto and Imai in 1985. The idea is to

create a quadratic system (Q) from a monomial transformation x 7→ y = x1+qθ ,
for some θ, over an extension F = GF(qn) of the finite field K = GF(q), where
the elements x and y of F correspond to the usual vectors over K by using an
explicit basis (see vector space).

It was broken by Patarin in 1995 [?], using the following idea: if y = x1+qθ

then xyq
θ

= xq
2θ

y. As v 7→ vq is K-linear, regardless of S and T , the variables v
and w satisfy a system of equations of the form

∑
αijwizj +

∑
βiwi +

∑
γjzj +

δ = 0. The coefficients can be determined by evaluating the original system at
many random ws and inserting the resulting pairs (w, z). Finally, for a target z
this linear system can be solved for w by Gaussian elimination.

Many ways to repair the original scheme have been suggested. Most famous
among these is the SFLASH scheme [?], which is a (C∗)− instance (i.e. a “minus”
variant of the C∗ scheme). It has been broken in 2007 by Dubois, Fouque, Shamir
and Stern [?]. Some variants of C∗ are still under investigation, for example in
characteristic 3 instead of characteristic 2.

HFE and QUARTZ

Instead of using a monomial over an extension F = GF(qn) of the finite field
GF(q), HFE [?] uses a polynomial transformation

F → F ;x 7→ y =
∑

0≤i≤j<r

aijx
qi+qj +

∑
0≤i<r

bix
qi + c.

and builds (Q) by using an explicit basis of F over GF(q). Operations involving
the secret key work in F while the public key is given over GF(q). By construction
(Q) is quadratic in x. Finding w given z corresponds to finding roots of the
polynomial e.g . using Berlekamp’s Algorithm (see Berlekamp Q matrix).

When the maximum degree D is fixed, polynomial time attacks exist, as
mentioned in the original paper. When D increases with n, no polynomial attack
is known. Nevertheless, subexponential and superpolynomial-time attacks have
been found by Faugère and Joux: the basic HFE central map has (in some sense)
a rank which is decided by D, which in turn bounds the operating degree in a
direct algebraic attack if D is too small. Therefore, it is recommended to use
HFE with some perturbations. For example, only exponential attacks are known



against HFE−. QUARTZ [?] is an HFEV− scheme with q = 2, d = 129, n = 103,
r = 8, v = 3 and the central polynomial is of the form below with 4 polynomials
removed from the system:

∑
0≤i,j<r
qi+qj≤d

aijx
qi+qj +

∑
0≤i,j<r
qi+qj≤d

bijx
qi x̄q

j

+
∑

0≤i,j<r
qi+qj≤d

αijx̄
qi+qj +

r−1∑
i=0

bix
qi +

r−1∑
i=0

β′ix̄
qi +c,

where x̄ denotes the vinegar variables.

UOV

In UOV [?], the system (Q) is given by m quadratic polynomials in n =
m+v variables (w1, . . . , wm, wm+1, . . . , wm+v). The first m variables w1, . . . , wm
are called “oil variables” and the v other variables wm+1, . . . , wm+v are called
“vinegar” variables. Each polynomial may contain quadratic terms of the form
“oil×vinegar” (i.e. wiwj with 1 ≤ i ≤ m andm+1 ≤ i ≤ m+v) or “vinegar×vinegar”
(i.e. wiwj with m+ 1 ≤ i, j ≤ m+ v), but must not contain quadratic terms of
the form “oil×oil” (i.e. wiwj with 1 ≤ i, j ≤ m). As a consequence, the system
(Q) is easy to solve, by fixing arbitrary values for the vinegar variables, and
solving the obtained system (in the m oil variables) by Gaussian elimination,
however (P) should hide the distinction between oil and vinegar variables. An
early version of this scheme (“Oil and Vinegar”, corresponding to the particular
choice v = m of the parameters) was broken by Kipnis and Shamir in 1998 [?].
However the “unbalanced” version (UOV) remains unbroken as long as v > 2m
(i.e. n > 3m).

Rainbow/TTS

The idea of the Rainbow scheme [?,?] is to use u UOV instances, in an it-
erative way. The first UOV instance contains v2 − v1 polynomials in v2 − v1 oil
variables and v1 vinegar variables. The second UOV instance contains v3 − v2
polynomials in v3 − v2 oil variables and v2 vinegar variables. The last UOV in-
stance contains vu+1 − vu polynomials in vu+1 − vu oil variables and vu vinegar
variables. Denoting vu+1 by n, the obtained system (Q) thus contains m = n−v1
polynomials in n variables, and is easily solved by recursively applying the UOV
principle: fix arbitrarily the v1 vinegar variables of the first UOV instance, solve
this instance in the v2−v1 oil variables, then consider all these v1+(v2−v1) = v2
variables as the vinegar variables of the second UOV instance, and so on. This
means that the legitimate signer has to solve more but smaller systems com-
pared to UOV. For carefully chosen parameters, the Rainbow scheme remains
unbroken. TTS [?], a predecessor of Rainbow, can be considered an aggressive
variant of the latter with sparse coefficients. This makes it faster in exchange of
opening more possible pitfalls.

“Medium-Sized” Extension Fields and IFS

Attempts were made with use several variables in a extension field such as
[?,?]. An unbroken one is the “Intermediate Field System” (IFS, [?]) where (Q)



is constructed using a system (Q′) of k polynomial equations in k variables over
an algebraic extension field of F . This system (Q′) is chosen to be solvable using
tailored Gröbner bases algorithms, and such that when rewritten in terms of
variables x using a basis over the “small” field F , it is quadratic. For carefully
chosen parameters, the IFS scheme remains unbroken.

Implementations

Multivariate digital signature schemes can have very short signatures as in
QUARTZ [?], which allows approximately 100 bit long signatures.

Multivariate cryptography is in general quite fast both for the public and
private maps. For instance, Rainbow/TTS are among the fastest digital signature
schemes and can be implemented cheaply on ASICs.

Another advantage of multivariate schemes is their flexibility in the design
of various schemes, with ad-hoc properties.

Open problems

The main drawbacks of MPKCs are large keys and the uncertainty about
their security. It is difficult to obtain (relative) security proofs as in schemes
based on factorization of discrete logarithm problem. The confidence in a given
scheme relies on its resistance to all known attacks that have been developed
against multivariate systems. Most needed are some provable security results;
also useful are management of large keys and continuing optimizations on current
hardware.
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