
Blending FHE-NTRU keys – The Excalibur

Property∗

Louis Goubin and Francisco José Vial Prado

Laboratoire de Mathématiques de Versailles
UVSQ, CNRS, Université Paris-Saclay

78035 Versailles, France

May 2, 2017

Abstract

Can Bob give Alice his decryption secret and be convinced that she
will not give it to someone else? This is achieved by a proxy re-encryption
scheme where Alice does not have Bob’s secret but instead she can trans-
form ciphertexts in order to decrypt them with her own key. In this
article, we answer this question in a different perspective, relying on a
property that can be found in the well-known modified NTRU encryp-
tion scheme. We show how parties can collaborate to one-way-glue their
secret-keys together, giving Alice’s secret-key the additional ability to de-
crypt Bob’s ciphertexts. The main advantage is that the protocols we
propose can be plugged directly to the modified NTRU scheme with no
post-key-generation space or time costs, nor any modification of cipher-
texts. In addition, this property translates to the NTRU-based multikey
homomorphic scheme, allowing to equip a hierarchic chain of users with
automatic re-encryption of messages and supporting homomorphic opera-
tions of ciphertexts. To achieve this, we propose two-party computation
protocols in cyclotomic polynomial rings. We base the security in presence
of various types of adversaries on the RLWE and DSPR assumptions, and
on two new problems in the modified NTRU ring.

1 Introduction

Is it possible to avoid betrayal in a hierarchic scenario? Imagine a chain of
users equipped with a public-key encryption scheme, where high level users can
decrypt ciphertexts intended to all lower level users in the chain. This is trivial
to construct using any public-key cryptosystem E : just transfer low-level secret-
keys to upper levels following the hierarchy. The evident drawback is that high-
level users can betray their children and distribute their secrets to other parties.
Using a proxy re-encryption procedure or multiple trapdoors is hence preferred,
because parents do not have direct knowledge of their children’s secrets. A proxy
re-encryption scheme is a cryptosystem that allows a public transformation of

∗This article appeared in the Proceedings of Indocrypt 2016 (Kolkata, India).

1

ciphertexts such that they become decryptable to an authorized party. This
is a particular case of a cryptosystem allowing delegation of decryption, which
finds applications in mail redirection, for instance. In this article, we give a
solution to the betrayal issue in another perspective, relying on a new property
we found in the well-known modified NTRU encryption scheme, and which we
refer to as “Excalibur”. Basically, this feature allows to generate a secret-key
that decrypts encryptions under multiple public-keys and behaves like a regular
key of the cryptosystem.

1.1 The Excalibur Property

A public-key encryption scheme E = (Keygen,Enc,Dec) with plaintext spaceM
has the Excalibur property if there is an algorithm that allows two users Alice
and Bob with key-pairs (skoldA , pkoldA) and (skB , pkB) respectively to forge a new
key-pair for Alice (skA, pkA) such that

– Alice’s key skA can decrypt ciphertexts in Enc(pkA,M) ∪ Enc(pkB ,M).

– Bob cannot decrypt ciphertexts in Enc(pkA,M).

– Alice cannot generate a secret-key sk′B that is able to decrypt ciphertexts
in Enc(pkB ,M) but is not able to decrypt ciphertexts in Enc(pkA,M) (i.e.
she cannot give away access to Bob’s secret without leaking her own).

The intuition is that skA is a one-way expression of (skoldA , skB). As Alice owns
decryption rights over Bob’s ciphertexts, this can be seen as automatic proxy
re-encryption, in the sense that the re-encryption procedure is the identity. The
idea is to “glue” Alice and Bob secret-keys together, resulting on a master key
given to Alice. This Excalibur master key can be separated into factors only
by Bob, hence the name of the feature: Bob plays the role of young Arthur,
who is the only man in the kingdom able to separate Excalibur from the stone.
Moreover, Alice can glue her key to an upper user’s key, who inherits decryption
over Bob’s ciphertexts, and so forth, and if we suppose that no user is willing to
give away own secrets, this achieves automatic N–hop re-encryption and sets a
hierarchic chain.

We therefore have a scheme in which a single private-key can decrypt messa-
ges under multiple public-keys, and we will see that if a group of low-level users
cheated in the joint key generation of this private-key (in order to sabotage or
harden decryption), the secret-key holder may be able to trace it back to the
wrongdoers, by simply testing decryptions and looking at the private-key’s co-
efficients. In a sense, this is the inverse setting of a public-key traitor tracing
scheme, where there are multiple secret-keys associated with a single public-key,
and such that if a group of users collude in creating a new private-key achieving
decryption with the public-key, it is possible to trace it to its creators, see for
instance [4].

Three main advantages of this property over the trivial transfer of keys, over
re-encryption schemes and over multiple trapdoor schemes are (i) there are no
extra space or time costs: as soon as the keys are blended, the resulting key-
pair acts as a fresh one and no ciphertext modification is necessary, (ii) our key
generation procedure can be plugged directly into the (multikey) NTRU-based
fully homomorphic encryption scheme, supporting homomorphic operations and

2

automaticN -hop re-encryption and (iii) a user with a powerful key does not need
to handle a “key ring” of secret-keys of her children; her key-pair (sk, pk) acts
as a regular NTRU key. In contrast, the classical proxy re-encryption scenario
is more flexible; a user can agree a decryption delegation at any moment to
any user, whereas in our proposal once the keys are blended, modifications in
hierarchy involve new key generations. This is why our proposal is more suitable
to a rigid pre-defined hierarchic scenario.

1.2 Modified NTRU

The NTRUEncrypt cryptosystem is a public-key encryption scheme whose se-
curity is based on short vector problems on lattices. Keys and ciphertexts are
elements of the polynomial ring Z[X]/〈φ(x)〉 where φ(x) = xn − 1, and coeffi-
cients are considered modulo a large prime q. This scheme was defined in 1996
by Hoffstein, Pipher, Silverman and gained much attention since its proposal
because of its efficiency and hardness reductions. In [25], Stehlé and Steinfeld
provided modifications to the scheme in order to give formal statistic proofs,
which ultimately led to support homomorphic operations with an additional
assumption in [23]. Among these modifications, we highlight the change of ring
and parameters restrictions: R = Z[x]/〈φ(x)〉 where now φ(x) = xn + 1, n is a
power of 2 (hence φ is the 2n-th cyclotomic polynomial), and the large prime
modulus is such that xn+1 splits into n different factors over Fq (namely, q = 1
mod 2n). We will consider the modified NTRU scheme, but we believe that,
possibly via a stretching of parameters, the original NTRU may also exhibit the
Excalibur property.

1.3 Excalibur key generation

The way to glue two secret-keys is very simple: just multiply them together !
Indeed, the modified NTRU scheme offers a fruitful property: If one replaces
a secret-key with a small polynomial multiple of it, decryption still works. If
this polynomial multiple is itself a secret-key, then by symmetry decryption
with the resulting key will be correct in the union of ciphersets decryptable
by one key or another. However, addressing the main point of this article,
parties must multiply the involved polynomials using multiparty protocols, since
they do not want to trust individual secrets to each other. To achieve this
joint key generation, we rely on multiparty protocols in the polynomial ring
Rq = Fq[x]/(xn + 1) in both the secret and shared setting. To this end, we
describe two multiplication protocols between mutually distrusting Alice and
Bob:

1. Secret inputs setting : Alice and Bob hold f, g ∈ Rq respectively. They
exchange random polynomials and at the end Alice learns fg + r ∈ Rq
where r is a random polynomial known by Bob, and Bob learns nothing.

2. Additively shared inputs setting : Alice and Bob hold fA, gA ∈ Rq
and fB , gB ∈ Rq respectively such that f = fA + fB and g = gA + gB .
They exchange some random polynomials, and at the end Alice and Bob
learn πA, πB respectively such that πA + πB = fg ∈ Rq. Revealing πA or
πB to each other does not leak information about the input shares.

3

Let us illustrate how to use these protocols in Alice’s key generation. Sup-
pose that Bob keys were previously generated. Generating Alice’s secret-key is
fairly easy: Informally, if β ∈ Rq is Bob’s secret-key, let Alice and Bob sample
random αA, αB ∈ Rq respectively, with small coefficients. They perform the
first protocol on inputs f = αA and g = β, and Bob chooses r = αBβ. At
the end, Alice learns γ = αAβ + αBβ = αβ ∈ Rq, and Bob learns nothing.
One may stop here and let Alice compute her public-key pkA = 2hγ−1 ∈ Rq
for suitable h ∈ Rq, but she may cheat and generate other NTRU fresh keys
(skA,

′ pk′A) and then distribute freely Bob’s secret γ. This is why the public-key
is also generated jointly, and moreover, the public-key will be generated before
the secret-key, this way Alice must first commit to a public-key pkA.

1.4 Fully Homomorphic Encryption

Fully Homomorphic Encryption schemes allow public processing of encrypted
data. Since Gentry’s breakthrough in [10–12], there has been considerable effort
to propose FHE schemes that are efficient [1, 2, 7, 14–18, 20], secure [2, 6, 8, 9,
13], and having other properties [7, 9, 13, 19]. We highlight the existence of
Multikey FHE schemes, in which some ciphertexts can only be decrypted with
the collaboration of multiple key-holders. This was first constructed in [23], and
it reduces the general multiparty computation problem to a particular instance.
We encourage the reader to see the latest version of this article.

All of the above schemes have a PPT encryption algorithm that adds random
“noise” to the ciphertext, and propose methods to add and multiply two cipher-
texts. With these methods they give an (homomorphic) evaluation algorithm
of circuits. The noise in ciphertexts grows with homomorphic operations (espe-
cially with multiplication gates) and after it reaches a threshold, the ciphertext
can no longer be decrypted. Thus, only circuits of bounded multiplicative de-
gree can be evaluated: these schemes are referred to as leveled FHE schemes.
Gentry proposed a technique called “bootstrapping” that transform a cipher-
text into one of smaller noise that encrypts the same message, therefore allowing
more homomorphic computations. This (algorithmically expensive) technique
remains the only known way to achieve pure FHE scheme from a leveled FHE
scheme. In order to do this, the decryption circuit of the leveled scheme must
be of permitted depth and the new scheme relies on non-standard assumptions.

Nevertheless, leveled FHE schemes with good a priori bounds on the mul-
tiplicative depth do satisfy most applications requirements, see [22, 27]. We
suggest that the use of our protocols in the LATV scheme use the leveled ver-
sion, but as pointed out in [23], the scheme can be transformed into a fully
homomorphic scheme by boostrapping and modulus reduction techniques, both
adaptable to the use of Excalibur keys.

1.5 FHE and bidirectional multi-hop re-encryption paradigm

It has been widely mentioned (for instance in the seminal work [11]) that a
fully homomorphic encryption scheme allows bidirectional multi-hop proxy re-
encryption. The argument is similar to the celebrated bootstrapping procedure:
let c be an encryption of m using Bob’s secret-key sB . First publish τ , an
encryption of sB under Alice’s public-key, then homomorphically run the de-
cryption circuit on c and τ , the result is an encryption of m decryptable by

4

Alice’s secret-key. However, we point out that this is pure re-encryption only
if Alice never gets access to τ , since she can decrypt and learn sB directly.
This restriction tackles the pure re-encryption definition, and in light of this
the NTRU-based FHE scheme with the Excalibur property may be a starting
point to clear out this paradigm (as it satisfies the pure definition, but fails to
be bidirectional).

1.6 Our contributions

In this article, we propose a key generation protocol that allows to glue NTRU
secret-keys together in order to equip a hierarchic chain of users, such that a
given user has the ability to decrypt all ciphertexts intended to all lower users
in the chain, and she cannot give away secrets without exposing her own secret-
key. This procedure can be plugged directly into the (multikey) FHE-scheme
by Lopez-Alt et.al., it is compatible with homomorphic operations and has no
space costs or ciphertext transformations, and important users do not have to
handle key rings. To achieve this, we describe two-party computations protocols
in cyclotomic polynomial rings that may be of independent interest. We base
the semantic security on the hardness of RLWE and DSPR problems, and the
semi-honest and malicious security in a new hardness assumption which we call
“Small Factors Assumption”. In this assumption we define the “Small GCD
Problem” and we show that any algorithm solving this problem can be used to
break the semantic security of the modified NTRU scheme.

2 Preliminaries

2.1 Notation

Let q be a large prime. We let the set {−bq/2c, . . . , bq/2c} represent the equi-
valence classes of Z/qZ, and both notations [x]q or x mod q represent modular
reduction of x into this set. For a ring A, A× stands for the group of units
(or invertible elements) of A, 〈a〉 or (a) is the ideal generated by a ∈ A. Also,
we denote by Fk the finite field of k elements, for k = ql ∈ Z. The notation
e ← ξ indicates that the element e is sampled according to the distribution ξ,

and e
R←− S means that e was sampled from the set S using the uniform dis-

tribution. Similarly, A
R
⊂ S means that each a ∈ A was sampled uniformly at

random on S. Finally, let R
def
= Z[x]/(xn + 1), we identify an element of R with

its coefficient vector in Zn, and for v(x) = v0 + v1x + · · ·+ vn−1x
n−1 in R, we

denote by ||v||∞, ||v||2 its l∞, l2 norm respectively.

2.2 The quotient ring Rq

Operations in the modified NTRU scheme are between elements of Rq
def
=

Fq[x]/(xn + 1), the ring of polynomials modulo Φ2n(x) = xn + 1 (i.e. Φ2n

is the 2n–th cyclotomic polynomial) and coefficients in Fq, where n is a power
of 2 and q is a large prime. Addition and multiplication of polynomials are per-
formed modulo Φ2n(x) and modulo q. The ring Rq is not a unique factorization
domain, in fact, small units of this ring serve as NTRU secret-keys. The Chinese

5

remainder theorem shows that the group of units is large, and thus y = ru ∈ Rq
where r ∈ Rq is a random element and u is a unit is a good masking of u: it is
unfeasible to recover u from y for large n. Let us collect some lemmas related
to the set of invertible elements of Rq.

Lemma 2.2.1 Let q ≥ 3 be a prime number and Φn(x) ∈ Z[x] be the n–th
cyclotomic polynomial. Then Φn(x) is irreducible over Fq if and only if q is a
generator of the group (Z/nZ)×.

Lemma 2.2.2 If n > 2 is a power of 2, then (Z/2nZ)× is not cyclic and
therefore Φ2n(x) = xn + 1 is not irreducible over Fq. In addition, xn + 1
decomposes into l distinct irreducible factors over Fq for prime q ≥ 3: Let

(φi)
l
i=1 ⊂ Fq[x] respectively such that xn + 1 =

∏l
i=1 φi(x) over Fq. Then we

have a ring isomorphism

π :
Fq[x]

(xn + 1)
→

l∏
i=1

Fq[x]

(φi(x))
where

Fq[x]

(φi(x))
' Fqdeg φi .

Corollary 2.2.3 Card(R×q) =
∏l
i=1

(
qdeg φi − 1

)
.

The proofs are straightforward. In the original modifications in [25], q = 1
mod 2n and hence xn+1 splits into n distinct linear factors, yielding Card(Rq)

× =
(q − 1)n.

2.3 Bounded Gaussian samplings on Z[x]/(xn + 1)

Let n be a power of 2 and q a prime number, R = R0
def
= Z[x]

(xn+1) and as before

Rq
def
=

Fq [x]
(xn+1) . The modified NTRU scheme uses a particular distribution in

Rq, which we refer to as K-bounded by rejection Gaussian, serving to sample
both message noises and secret-keys. Definitions follow.

Definition 2.3.1 Let Gr be the Gaussian distribution over R, centered about 0
and of standard deviation r.

Sampling from Gr can be done in polynomial time, for instance approximat-
ing with Irwin-Hall distributions. Consider the following definitions from [23]:

Definition 2.3.2 A polynomial e ∈ R is called K-bounded if ||e||∞ < K.

Definition 2.3.3 A distribution is called K-bounded over R if it outputs a K-
bounded polynomial.

Definition 2.3.4 (K-bounded by rejection Gaussian) Let ḠK be the distribution
GK/√n that repeats sampling if the output is not K-bounded.

Lemma 2.3.5 (Expansion factors for φ(x) = xn + 1, from [23]) For any poly-
nomials s, t ∈ R,

||s · t mod φ(x)||2 ≤
√
n · ||s||2 · ||t||2,

||s · t mod φ(x)||∞ ≤ n · ||s||∞ · ||t||∞.

Corollary 2.3.6 Let χ be a K-bounded distribution over R and let s1, . . . , sl ←
χ. Then

∏l
i=1 si is (nl−1Kl)-bounded.

6

3 Modified NTRU encryption

We review the modified NTRU encryption scheme as presented in [23], and we
insist on the multi-key property. The message space is {0, 1} and the ciphertext

space is Rq =
Fq [x]

(xn+1) . Let q be a large prime, 0 < K � q, n be a power of 2

and ḠK be the K-bounded by rejection discrete Gaussian. A key-pair (sk, pk)
is a tuple of polynomials in Rq, the secret-key being K-bounded.

Keygen(1κ):

Step 1. Sample a polynomial f ← ḠK . Set sk = 2f + 1, if sk is not invertible
in Rq start again.
Step 2. Sample a polynomial g ← ḠK and set pk = 2g · sk−1 ∈ Rq.
Step 3. Output (sk, pk).

Enc(pk,m): Sample polynomials s, e← ḠK . For message m ∈ {0, 1}, output
c = m+ 2e+ s · pk mod q.

Dec(sk, c): For a ciphertext c ∈ Rq, compute µ = c · sk ∈ Rq and output
m = µ mod 2.

3.1 The multikey property

We describe a decryption property that states that one can decrypt a ciphertext
with the secret-key required for decryption, or a small polynomial multiple of
it.

Lemma 3.1.1 Let (f, h) ← Keygen(1κ), m ∈ {0, 1} and let c ← Enc(h,m).
Let θ ∈ R be a M -bounded polynomial satisfying θ mod 2 = 1. If M <
(1/72)(q/n2K2), then

Dec(f, c) = Dec(θ · f, c) = m.

Proof: There exist K-bounded polynomials s, e such that c = m + hs + 2e.
Decryption works since

[fc]q = [fm+ fhs+ 2fe]q = [fm+ 2gs+ 2fe]q

and supposing there is no wrap-around modulo q in the latter expression, we
have [fc]q mod 2 = fc mod 2 = m. If we replace f by θ ·f and try to decrypt,
we have θfc = θfm+ 2θgs+ 2θfe, and then again, if there is no wrap-around
modulo q (i.e. if M is small enough), θfc mod 2 = m is verified. To ensure
that there is no wrap-around modulo q, one has to give an a priori relation
between K,n and M . In fact, using corollary 2.3.6, we have ||gs||∞ < nK2 and
||fe||∞ < n(2K + 1)K, and thus

||fc||∞ < 2nK2 + 2n(2K + 1)K +K.

Decryption using f is correct if 2nK2 + 2n(2K + 1)K +K < q/2, and decryp-
tion using θf is correct if nM(2nK2 + 2n(2K + 1)K + K) < q/2. Therefore,
decryption using f is ensured by 36nK2 < q/2, decryption using θf is ensured
by 36n2MK2 < q/2. �

7

Corollary 3.1.2 (The multikey property) Let (f1, h1) and (f2, h2) be valid
keys, m1,m2 ∈ {0, 1} and let c1 ← Enc(h1,m1), c2 ← Enc(h2,m2). Let f̃ ←
f1 · f2 ∈ Rq. Then

Dec(f̃ , c1) = m1, Dec(f̃ , c2) = m2

provided that K is small enough,
Proof: Apply 3.1.1 with f = f1 and θ = f2 for the first equation and

f = f2, θ = f1 for the second. �

We can of course extend this facts to show that a highly composite key of
the form f̃ =

∏l
i=1 fi ∈ Rq can decrypt all messages decryptable by any of

fi: Just apply lemma 3.1.1 with f = fi and θ = f̃/fi, provided good a priori
bounds: In fact ||f̃ ||∞ ≤ nl−1Kl, therefore decryption with this key is ensured
by nl−1Kl � q.

4 Hardness assumptions

The modified NTRU-FHE scheme semantic security is based on the celebrated
Ring Learning With Errors problem (RLWE) and the new Small Polynomial Ra-
tio problem (SPR). For the original modified NTRU parameters, the decisional
SPR problem reduces to RLWE, but not a single homomorphic operation can be
assured. A stretch of parameters is needed to overcome this, though it severely
harms the statistic proofs of Stehlé and Steinfeld. The DSPR assumption states
that the decisional SPR problem with stretched parameters is computationally
hard. We adopt this same assumption, and in addition, we base the security
of the honest-but-curious model on two problems that involve decomposing a
polynomial into bounded factors. In the first, one wants to factorize a polyno-
mial in Rq into two K-bounded polynomials, given the information that this
is possible. In the second, one wants to extract a common factor of two poly-
nomials such that the remaining factors are K-bounded. We first describe the
DSPR assumption and then our “Small Factors” assumption.

4.1 Small Polynomial Ratio Problem, from [23]

In [25] Stehlé and Steinfeld based the security of the modified NTRU encryption
scheme on the Ring Learning With Errors (RLWE) problem [24]. They showed
that the public-key pk = 2g · sk−1 ∈ Rq is statistically close to uniform over Rq,
given that g and f ′ = (sk− 1)/2 were sampled using discrete Gaussians. Their
results holds if (a) n is a power of 2, (b) xn+ 1 splits over n distinct factors over
Rq (i.e. q = 1 mod 2n) and (c) the Gaussian error distribution has standard
deviation of at least poly(n)

√
q. However, these distributions seem too wide

to support homomorphic operations in the NTRU-FHE scheme. To overcome
this, authors in [23] defined an additional assumption which states that if the
Gaussian is contracted, it is still hard to distinguish between a public-key and
a random element of Rq (even if the statistic-closeness result does not hold).

Definition 4.1.1 (DSPR Assumption) Let q ∈ Z be a prime integer and ḠK
denote the K-bounded discrete Gaussian distribution over R0 = Z[X]/(xn + 1)
as defined in 2.3.4. The decisional small polynomial ratio assumption says that

8

it is hard to distinguish the following two distributions on Rq: (1) A polynomial
h = [2gf−1]q ∈ Rq where f ′, g were sampled with ḠK and f = 2f ′+1 is invertible

over Rq, and (2) a polynomial u
R←− Rq sampled uniformly at random.

Finally, in a work by Bos et.al. [5], authors achieved to base the security
on RLWE alone, alas achieving multikey FHE for a constant number of keys, a
property inherent to any FHE scheme (as proved in the latest version of [23]).

4.2 Small factorizations in the quotient ring

In addition to the RLWE and DSPR assumptions, we rely the semi-honest
security on the hardness of the following problems. Let us define the distribution
Ḡ×K which samples repeatedly from ḠK until the output is invertible over Rq.

Small Factors Problem: Let a, b ← Ḡ×K and let c(x) = a(x) · b(x) ∈ Rq.
Find a(x) and b(x), given c(x) and a test routine T : Rq → {0, 1} that outputs
1 if the input is in {a, b} and 0 otherwise.

Ḡ×K–GCD Problem: Let a, b← Ḡ×K , and y
R←− Rq. Let u(x) = a(x) ·y(x) ∈ Rq

and v(x) = b(x) · y(x) ∈ Rq. Find a(x), b(x) and y(x), given u(x), v(x) and
a test routine T : Rq → {0, 1} that outputs 1 if the input is in {a, b, y} and 0
otherwise.

Proposition 4.2.1 An algorithm solving the Ḡ×K–GCD problem can be used to
break the semantic security of the NTRU scheme.

Proof: Given only a public-key of the form pk = [2ab−1]q where a is the

secret-key, sample p
R←− Rq and define (u′, v′) = (ab−1p, p). Define also T :

Rq → {0, 1} that for input α ∈ Rq, samples random r
R←− {0, 1}, checks if

Dec(α,Enc(pk, r))
?
= r and outputs 1 if α pass several such tests. Note that

u′ = ay′ and v′ = by′ for y = b′−1p, therefore seeding u′, v′, T to such algorithm
outputs a, b, y′. �

Small Factors Assumption: For the modified NTRU parameters, it is un-
feasible to solve the small factors problem.

In the absence of a formal proof, let us motivate the hardness of the small
factors problem. The SF problem is equivalent to solve a quadratic system of
equations over Fq with additional restrictions on the unknowns. Indeed, each
coefficient of c(x) is a quadratic form on coefficients of a(x), b(x):

ck =

n−1∑
i=0

aibk−i mod n · σk(i) mod q,

where σk(i) = +1 if i ≤ k and −1 otherwise, the unknowns ai, bj follow a Gaus-
sian distribution about 0 and are bounded in magnitude by K. As K � q,
one can consider the equations over the integers. This results in a Diophan-
tine quadratic system of n equations in 2n variables. Quadratic systems of m
equations with n unknowns can be the Achilles heel for strong cryptographic
primitives, as they can be attacked in the very overdetermined (m ≥ n(n−1)/2)
or very underdetermined (n ≥ m(m+1)) cases in fields with even characteristic.

9

In [26], authors adapt an algorithm of Kipnis-Patarin-Goubin [21] to odd char-
acteristic fields and show a gradual change between the determined case (m = n,
exp(m) runtime) and the massively underdetermined case (n ≥ m(m + 1),
poly(n) runtime). According to their analysis, our system (n = 2m) escapes
the polynomial-time scope. Let us write the system in clear:

∀i ∈ {0, . . . , n− 1}, ||ai||∞ < K and ||bi||∞ < K,

c0 = a0b0 − a1bn−1 − a2bn−2 − . . . − an−1b1,
c1 = a0b1 + a1b0 − a2bn−1 − . . . − an−1b2,
c2 = a0b2 + a1b1 + a2b0 − . . . − an−1b3,
...

cn−1 = a0bn−1 + a1bn−2 + a2bn−3 + . . . + an−1b0.

As this is an underdetermined system, the linearization Zi,j = aibj results in
a linear system with too many degrees of freedom to select the correct solution;
this is not better than guessing in the initial quadratic system. On the other
hand, this system presents cyclic anti-symmetry, which one could exploit to find
a solution. However, it is not clear how to use the additional symmetry to make
progress in finding solutions (this is also the case when trying to solve lattice
problems in the particular case of ideal lattices).

5 Two-party multiplication protocols in Rq

In this section we introduce two protocols to jointly achieve multiplication in
the quotient ring between two mutually distrusting parties. We distinguish
two settings, the “secret inputs” (which is the classical MPC scenario) and the
“shared inputs” which supposes that both parties have additive shares of some
elements. The latter setting, however, can be regarded as a classical MPC
computing a quadratic expression of the inputs.

5.1 Secret inputs setting

Alice and Bob hold f ∈ Rq and g ∈ Rq respectively. The following protocol
allows them to multiply these elements: Alice will learn fg + r ∈ Rq where r
is a polynomial chosen by Bob. The reason of this is that if Alice learns fg,
she can compute g = fg/f . The utility of this protocol may seem questionable,
in the sense that it transfers Alice’s obliviousness from g to r, nevertheless we
will see that careful selection of r will allow the two parties to generate Alice’s
NTRU keys. This protocol is inspired on [3], where authors propose a protocol
to compute scalar products as a building block to perform much more complex
functionalities. It is detailed in algorithm 1.

Note that throughout the protocol, Bob always computed products of ran-
dom polynomials, and to guess the value of f he has to perform ≈ pm additions.

Lemma 5.1.1 If it is not feasible to compute O(pm) additions in Rq, and if
the RLWE assumption holds for q, φ(x) = xn + 1 and uniform χ over Rq, TMP
securely outputs fg + r to Alice and r to Bob in the presence of semi-honest
parties.

10

Algorithm 1 TMP
Require: Alice holds f ∈ Rq, Bob holds g ∈ Rq. Let p,m be public integers.
Ensure: Alice learns fg + r ∈ Rq where Bob knows r ∈ Rq

1: Alice generates m random polynomials {f1, . . . , fm}
R
⊂ Rq such that

∑m
i=1 fi = f .

2: Bob generates m random polynomials {r1, . . . , rm}
R
⊂ Rq and r

def
=

∑m
i=1 ri.

3: for i = 1, . . . ,m do
4: Alice generates a secret random number k, 1 ≤ k ≤ p.
5: Alice generates random polynomials v1, · · · , vp, sets vk = fi, and send all these

polynomials to Bob.
6: Bob computes the products and masks them: For all j = 1, . . . , p zi,j = vjg+ri.
7: Alice extracts zi,k = fig + ri from Bob with a 1–out–of–p OT protocol.
8: end for
9: Alice computes

∑m
i=1 zi,k = fg + r.

Proof: In this model, both parties follow exactly the protocol but try to learn
as much information as possible from their transcript of the protocol. Let viewA,
viewB be the collection of learned elements by Alice and Bob respectively. We

have that viewB contains only polynomials v
(i)
j indistinguishable from uniform

(since they were sampled by semi-honest Alice), and these elements are inde-
pendent from Bob’s input, samplings, and computations. Therefore, to learn
f , he needs to perform ≈ pm additions. On the other hand Alice wants to
learn g or r and she only has m pairs of the form (fi, fig + ri) (and the output
which is the component-wise sum of these), which by the RLWE assumption
are indistinguishable from (fi, ui) for uniform ui. In other words, the view of
each adversary contains her input, her output, and a list of polynomials indis-
tinguishable from random by construction. We can construct simulators SA,SB
of protocol TMP for both parties, and it follows immediately that the views of
Alice and Bob are indistinguishable from the simulators. �

Remark: If both parties are malicious but they do not want to leak their
own inputs, at the end of the protocol they learn nothing about the other party’s
input.

This holds because Alice may deviate from the samplings, but she sends pm
random elements computationally hiding f , Bob will process these pm elements
(deviating as much as he wants from the actual required computation) and send
m elements computationally hiding g and r to Alice via the OT protocol, thus
Bob learns nothing. In this case, deviations from the protocol may cause the
output to be incorrect. We do not worry much about this as soon as Bob’s
input is safe, since we will see that it will result in invalid keys for Alice and the
honest party will know that the other is malicious.

5.2 Shared inputs setting

In this setting, two parties share two elements of Rq additively, and they want
to compute shares of the product of these elements. Let Alice and Bob hold
xA, yA and xB , yB respectively such that

x = xA + xB and y = yA + yB .

11

We propose a protocol SharedTMP, at the end of which Alice and Bob will learn
additive shares πA, πB respectively of the product:

πA + πB = xy ∈ Rq.

Algorithm 2 SharedTMP

Require: Alice holds (xA, yA) ∈ R2
q , Bob holds (xB , yB) ∈ R2

q such that x = xA +
xB , y = yA + yB

Ensure: Alice learns πA ∈ Rq, Bob learns πB ∈ Rq such that πA + πB = xy

1: Alice samples rA
R←− Rq, Bob samples rB

R←− Rq

2: Alice and Bob perform TMP(xA, yB) using Bob’s randomness rB , thus Alice learns
uA = xAyB + rB and Bob learns nothing.

3: Bob and Alice perform TMP(xB , yA) using Alice’s randomness rA, thus Bob learns
uB = xByA + rA and Alice learns nothing.

4: Alice computes the share πA = xAyA + uA − rA ∈ Rq

5: Bob computes the share πB = xByB + uB − rB ∈ Rq

Note that πA+πB = (xA+xB)(yA+yB) = xy. Since they only communicate
in steps 2 and 3, security is reduced to two independent instances of the TMP
protocol. We also have the following observation:

Lemma 5.2.1 Let Alice and Bob perform SharedTMP on some non-trivial in-
puts, learning at the end πA and πB respectively. Even if Alice reveals πA to
Bob, he cannot deduce Alice’s inputs.

Proof: This follows directly from the randomness of uA − rA. �

6 Excalibur key generation

We present our main contribution, three protocols Keygenpk,Keygensk and a
validation protocol, to be performed by Alice and Bob that will generate the
public and the (blended) private-key of Alice, in that order. Let us first give
an informal outline of the protocol. Bob has already generated his key-pair
(β, 2hβ−1) ∈ Rq × Rq. They want to compute a new key-pair (skA, pkA) =
(αβ, 2g(αβ)−1) ∈ Rq×Rq for Alice, which correctly decrypts encryptions under
pkB since it contains the factor β.

– Excalibur generation of pkA

1. They share polynomials α, g, r of Rq additively, such that α = 1
mod 2.

2. They perform SharedTMP to obtain shares of αr, gr. Alice reveals
her shares to Bob.

3. Bob computes 2(gr) · (αr)−1 · β−1 = 2g(αβ)−1 in Rq and broadcasts
the result.

– Excalibur generation of skA (to be performed after publication of pkA)

12

1. Let αA + αB = α denote the same additive sharing of α than in the
previous steps, where Alice holds αA and Bob holds αB . Alice and
Bob perform TMP on entries αA, β respectively, and Bob chooses
r = αBβ as the randomness in the protocol.

2. At the end of the protocol, Alice learns αAβ + r = αβ = skA ∈ Rq,
and Bob learns nothing.

– Validation protocol : Alice and Bob run tests to be convinced that the
keys are well formed and behave as claimed.

The protocols are described formally in algorithms 3, 4 and 6.

Algorithm 3 Excalibur Keygenpk

Require: Bob already has his own key-pair (skB , pkB) = (β, 2hβ−1) ∈ Rq ×Rq.
Ensure: A public-key for Alice pkA
1: Alice and Bob sample random shares of elements in Rq:

– Alice samples sA ← ḠK , rA
R←− Rq, gA ← ḠK

– Bob samples sB ← ḠK , rB
R←− Rq, gB ← ḠK

Let α = 2(sA + sB) + 1, r = rA + rB , g = gA + gB denote the shared elements.
2: Alice and Bob perform SharedTMP twice to obtain shares of z = α ·r and w = g ·r.

Alice reveals her shares, thus Bob learns z, w.
3: Bob checks: If z is not invertible in Rq, restart the protocol.
4: Bob computes 2w(zβ)−1 = 2g(αβ)−1 and publishes it as pkA, along with a NIZK

proof showing that z, w come from step 2 and that pkA is well-formed.
5: Alice verifies Bob’s proof. If it is not correct, abort the protocol.

If protocol 3 was carried out properly, a ciphertext encrypted with pkA
is correctly decrypted by any secret-key having the factor αβ and reasonable
coefficient size. Remark that in step 2, Bob received the element z = α · r: this
does not allow to deduce a functional equivalent of the secret-key αβ, since r
has large coefficients. Also, chances are overwhelmingly high that this element
is in fact invertible in view of section 2.2.

Algorithm 4 Excalibur Keygensk
Require: Bob’s secret-key β and the same sharing of α = 2(sA + sB) + 1 than in

protocol 3.
Ensure: A secret-key for Alice skA = αβ
1: Bob computes r := (2sB + 1)β ∈ Rq

2: Alice and Bob perform the protocol TMP(2sA, β), and Bob uses r as the random
polynomial. At the end Alice knows 2sAβ + r = αβ ∈ Rq.

Once the keys are generated, they must pass a series of decryption and a
well-formedness test. This is described in algorithms 5 and 6. First, Alice
checks if her new secret-key works as expected, and then she convinces Bob,
via a game of decryptions that she is indeed capable of decrypting ciphertexts
encrypted under pkA and under pkB . As we will see, this validation protocol
avoids malicious activity.

13

Algorithm 5 Validation function (performed by Alice)

1: function Validate(skA, pkA, pkB)
2: for i from 1 to k do
3: µ

R←− {0, 1}
4: µ1 ← Dec(skA,Enc(pkA, µ))
5: µ2 ← Dec(skA,Enc(pkB , µ))
6: if µ1 6= µ or µ2 6= µ then output reject

7: end if
8: end for
9: if ||skA||∞ > n(2K + 1)2 or ||skA · pkB ||∞ > 2(2K + 1) then output size

warning

10: end if
11: output accept

12: end function

Algorithm 6 Validation protocol (performed by Alice and Bob)

Require: Alice holds (skA, pkA) and Bob holds (skB , pkB)
1: Alice runs Validate(skA, pkA, pkB). If the output is reject, abort.

2: Bob picks 2k random messages (m
(A)
1 , . . . ,m

(A)
k) and (m

(B)
1 , . . . ,m

(B)
k), and

for each i = 1, . . . , k he computes ciphertexts c
(A)
i = Enc(pkA,m

(A)
i), c

(B)
i =

Enc(pkB ,m
(B)
i). He send all ciphertexts to Alice.

3: For each i = 1, . . . , k, Alice compute µ
(A)
i = Dec(skA, c

(A)
i), µ

(B)
i = Dec(skA, c

(B)
i).

She sends all plaintexts to Bob.
4: For each i = 1, . . . , k, Bob checks if µ

(A)
i = m

(A)
i and µ

(B)
i = m

(B)
i .

7 Security

We first discuss the honest-but-curious model, where the protocol is strictly
followed but parties try to learn secrets. Then we look at the malicious model,
where one party does not follow the protocol properly, in order to steal secrets
or to sabotage the key generation.

7.1 Honest-but-curious model

In this model, we suppose that Alice and Bob follow exactly the instructions in
algorithms 3, 4, 5 and 6 but they try to learn about each other’s secret with all
collected information.

Proposition: If Alice is able to extract Bob’s key from the protocol, she
can solve the Small Factors Problem or the Ḡ×K-GCD Problem. If Bob is able to
extract Alice’s key, he can solve the Ḡ×K-GCD Problem.

Proof: Let us focus first in Bob’s chances on learning α (or a functional
equivalent of the form θ · α for small θ ∈ Rq). Recall that

pkB = 2hβ−1,
pkA = 2g(αβ)−1,
z = α · r,
w = g · r,
α = 2(sA + sB) + 1.

Let us focus on Bob’s view of the protocol:

14

V = {(sB , rB , gB , zB , wB , zA, wA, β, pkB), pkA, α · r, g · r} ⊂ Rq.

What Bob is curious about: Any element of the set

U = {α, g, r, sA, gA, rA} ⊂ Rq.

The parentheses in V indicate that he sampled or received the elements
contained, and the rest are results of joint computation. The knowledge of
any element in U allows Bob to deduce Alice’s secret-key α, and only the last
three elements pkA, α · r, g · r of V depend on elements in U . Thus, extracting
α is equivalent to solve the following system of equations in the unknowns
(X,Y, Z) = (α, r, g): b1 = XY,

b2 = ZY,
b3 = ZX−1,

where b1 = α · r, b2 = g · r, b3 = βpkA/2. We can eliminate the third equation
noting that b1b3 = b2, and thus Bob faces the Small GCD Problem of section
4.2.

Let us now focus in Alice chances of learning Bob’s secret.

Alice’s view of the protocol: W = {(sA, rA, gA, zA, wA), pkB , pkA, αβ} ⊂ Rq.
What Alice is curious about: Any element of the set

Q = {α, β, h, sB , {wB , zB}, {w, z}}.

First, extracting α or β directly from α ·β is exactly the small factors Prob-
lem. Using the only three sensitive elements of W , she faces the following system
of equations in (X,Y, Z) = (h, β, α) a1 = XY −1,

a2 = (ZY)−1,
a3 = ZY,

where a1 = pkB/2, a2 = pkA/2g, a3 = αβ. After elimination of the third equa-
tion since a3 = a−12 , Alice also faces the small GCD problem (actually, mapping
Y 7→ Y −1, Z 7→ Z−1 yields to the same gcd problem faced by Bob). �

7.2 Security against one malicious party

We consider the presence of one malicious adversary, a party that deviates as
much as she wants from the protocol, but has a list of paramount objectives
which she is not willing to sacrifice. We suppose that one of the two parties
strictly follows the protocol and the other one is malicious, given the objectives
below. We consider the presence of only one somewhat malicious adversary,
given that both parties have concurrent objectives (for instance, Bob is trying
to protect his key, and Alice to extract it from the protocols). In other words,

What curious Alice wants:

(A1) A functional secret-key skA associated with pkA,

(A2) such that skA decrypts encryptions under pkB ,

15

(A3) protecting elements of U = {gA, rA, sA} from Bob and

(A4) to learn β.

What curious Bob wants:

(B1) To give Alice a functional secret-key skA associated with pkA with decryp-
tion rights on Enc(pkB ,M).

(B2) to protect elements of Q = {β, h, sB , {wB , zB}} from Alice,

(B3) (if malicious) overloading Alice’s secret-key skA to have large coefficients,
and

(B4) to learn α.

We will show that either the keys will be correctly generated or one party
will not fulfill all of her objectives.

7.2.1 Malicious Alice, semi-honest Bob

Suppose that Bob is strictly following the protocol and Alice may deviate from
the protocol but wants to fulfill (A1) to (A4). Let us summarize Alice’s partic-
ipation in the key generation:

1. Samples sA ← ḠK , rA
R←− Rq, gA ← ḠK .

Trivial samplings of these elements may ultimately leak α to Bob. For
instance, if sA = 0, α = 2sB +1, if rB = 0, z/rB = α, if gA = 0 g = w/gB .
Also, if sA or gA have large coefficients, there is risk of mod q wrap-around
in the decryption procedure with skA. As she is sampling only shares of
elements, she cannot force algebraic relations with them: regardless of her
samples, α, g, r will remain indistinguishable from random.

2. Participates in SharedTMP((2sA, rA), (2sB+1, rB)) and learns zA, partic-
ipates in SharedTMP((gA, rA), (gB , rB)) and learns wA, then sends zA, wA
to Bob.

As discussed in section 5, TMP and SharedTMP are secure if Bob is honest,
in the sense that either Alice learns the correct output, or either she
learns indistinguishable from random elements, but she learns nothing
about Bob’s input. She is limited to alter the inputs of both instances
of SharedTMPand then giving wrong zA or wA to Bob. Nevertheless if
she inputs different rA’s in both protocols or if she changes the values
of zA, wA before sending them to Bob, from the linearity of shares and
the randomness of Bob’s entries it follows that this sabotages the relation
wz−1 = gα−1, needed for correctness of decryption. In other words, in
order to ensure (A1) and (A2), she is forced to maintain the input rA for
both instances of SharedTMPand send the correct output to Bob.

3. Participates in TMP({2sA}, {2sB + 1}) and learns αβ.

If she uses the correct value of 2sA (i.e. the same as in step 2), she learns
the correct output αβ. If she inputs another value x 6= 2sA, she does learn
a functional equivalent of Bob secret (namely, (x+ 2sB + 1)β), but she is
not able to decrypt encryptions under the already published pkA, failing
the verification procedure.

16

7.2.2 Malicious Bob, semi-honest Alice

Now suppose the inverse case, where Alice follows the protocol strictly and Bob
is protecting β and guessing α, deviating as much as he wants from the protocol
but fulfilling (B1) to (B4). We begin by saying that (B3) is unavoidable (unless
the presence of a zero-knowledge proof that Bob’s polynomials are of the right
size), but Alice can tell if Bob overloaded the secret-key αβ simply looking at the
coefficients. Let us now summarize Bob’s participation in the key generation:

1. Samples sB ← ḠK , rB
R←− Rq, gB ← ḠK .

Trivial sampling may compromise sensible elements as before. He must
ensure the randomness of α, r if he wants to protect these elements, and on
the other hand Alice will know if he deviates from a K-bounded sampling
(just looking at the coefficients in α · β. Therefore, he gains nothing in
deviating from a K-bounded sampling.

2. Participates in SharedTMP((2sA, rA), (2sB + 1, rB)) and learns zB, par-
ticipates in SharedTMP((gA, rA), (gB , rB)) and learns wB.

As noted in section 5, because of Alice’s randomness in SharedTMP, either
Bob obeys the protocol an receive the correct outputs, either he deviates
and receives random outputs, from which he cannot deduce secret values
and which sabotage key generation. Also, if he uses different rB ’s in both
instances, Alice will not be able to decrypt since the decryption relation
wz−1 = gα−1 is not fulfilled (and he remains oblivious of rA, not being
able to force this relation). Hence, he is forced to follow SharedTMP and
use the same rB in both instances if he wants to fulfill (B1).

3. Receives zA, wA, learning z, w. Checks if z is invertible and publishes
pkA = 2w(zβ)−1. He then participates in TMP({2sA}, {2sB+1}), chooses
R = (2sB + 1)β and learns nothing.

Suppose that he published pk′A as Alice’s public-key and participated in
the TMP instance with generic values, indicated by an apostrophe. At
the end, Alice knows pk′A and sk′A. She will run the validate function
of algorithm 5 to check (i) if sk′A has the expected coefficient size, (ii)
if sk′A · pk

′
A = 2g′ for a vector g′ ∈ χ and (iii) if she is able to decrypt

encryptions of messages under pk′A and pkB . If she is indeed able to
decrypt encryptions under pkB , then sk′A contains the factor β, thus by
randomness of sA, β′ = θβ and R′ = ωβ for small θ and ω. Also, as long
as the polynomials sk′A and sk′A · pk

′
A are of the right form, she does not

care about how Bob computed pk′A, as decryption of encryptions under
pk′A work as claimed. If on the contrary a single decryption fails or if
sk′A or sk′A · pk

′
A have large coefficients, she can claim one of the following

Bob’s wrongdoings: Either he did not include β, either he included θβ for
too large θ, either he sabotaged entirely the key generation in a change
of input or inside a multiparty multiplication protocol. This allows to
conclude that if Bob fails to give what is expected, the output keys will be
rejected by Alice, who discovers Bob’s maliciousness after the validation
protocol 6.

We should point out another strategy that Bob could maliciously try. When
generating Alice’s secret-key, he could simply ignore Alice’s input share 2sA,

17

and thus the protocol gives Alice the key sk′A = α′β, for an α′ ∈ R×q of Bob’s
choice. Bob, who received no output from the protocol, can reconstruct this key,
thus gaining Alice’s secret. However, this key will be rejected by Alice since it
cannot be associated with the previously generated pkA = 2g(αβ)−1. To avoid
this rejection, Bob should have published pk′A = 2g′(α′β)−1 instead, but it is
easy to see that this publication would contradict the NIZK proof of step 4 of
algorithm 3: Because of the way SharedTMP works, Bob has no way of choosing
α′ of his choice in the expression z = αr. In view of this, passing the validation
protocol with such a key is overwhelmingly unlikely.

8 Extensions

8.1 Chains of keys

Suppose Alice and Bob perform the latter protocols, such that Alice has now a
private-key of the form skA = αβ where β is Bob’s secret-key. Alice can repeat
the protocol with a third user Charlie (with slight coefficients size modifications
at the validation protocol), who at the end receives a pair of keys of the form
(skC , pkC) = (αβγ, 2gC(αβγ)−1). As his secret-key contains the factors β and
αβ, he can decrypt both Bob’s and Alice’s ciphertexts. This shows that easy
modifications to the protocol allows to generate a chain of users, each one inher-
iting the previous user decryption rights. From corollary 3.1.2, it is easy to see
that the length of such a chain is at most ≈ log(q/nK) to ensure decryptions
(this matches the maximum number of keys on the multikey LATV FHE scheme
for the same parameters). We point out that intersecting chains are also pos-
sible, meaning that a user can glue her secret-keys to two or more upper-level
users and even if they collude they are not able to extract his key. This comes
from an easy generalization of our Ḡ×K–GCD problem.

8.2 Plugging in LATV-FHE

Because of the form of an Excalibur key, i.e. (sk, pk) = (
∏r
i=1 αi, 2g

∏r
i=1 α

−1
i),

the inclusion of our protocols into the Multikey FHE scheme from [23] is imme-
diate. The only missing element are the evaluation keys, which can be generated
easily by the secret-key holder after the (Excalibur) key generation: they are
“pseudo-encryptions” of the secret-key sk under the public-key pk. This achieves
a somewhat homomorphic encryption scheme in the chain of users, where in ad-
dition they can combine ciphertexts generated by any public-key.

9 Conclusion

In this article, we proposed a new protocol to generate NTRU keys with ad-
ditional decryption rights, allowing to form a hierarchic chain of users. We
motivated such a procedure because it avoids betrayal naturally, and since it
applies to the FHE-NTRU scheme, it may contribute to clear the bootstrapping-
like re-encryption paradigm, since it is to our knowledge the first FHE scenario
featuring (the pure definition of) proxy re-encryption. In this light, it con-
curs with other proxy re-encryption schemes, as, while being rigid, ciphertext

18

transformation is no necessary at all, since decryption rights are defined in key-
generation time. We used two-party computation protocols as building blocks,
and relied the semantic security on the well-known RLWE and DSPR assump-
tions, and security in presence of semi-honest parties on a hardness assumption
in cyclotomic polynomial rings.

Acknowledgments

We would like to thank Pablo Schinke Gross for suggesting the term Excalibur
and the INDOCRYPT 2016 anonymous reviewers for their helpful comments.
This work has been supported in part by the FUI CRYPTOCOMP project.

References

[1] Alperin-Sheriff, J., Peikert, C.: Practical Bootstrapping in Quasilinear
Time, pp. 1–20. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

[2] Alperin-Sheriff, J., Peikert, C.: Faster Bootstrapping with Polynomial Er-
ror, pp. 297–314. Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

[3] Atallah, M.J., Du, W.: Secure multi-party computational geometry. In:
International Workshop on Algorithms and Data Structures. pp. 165–179.
Springer-Verlag (2001)

[4] Boneh, D., Franklin, M.: An Efficient Public Key Traitor Tracing Scheme,
pp. 338–353. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

[5] Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved Security for a
Ring-Based Fully Homomorphic Encryption Scheme, pp. 45–64. Springer
Berlin Heidelberg (2013)

[6] Brakerski, Z.: Fully Homomorphic Encryption without Modulus Switching
from Classical GapSVP, pp. 868–886. Springer Berlin Heidelberg, Berlin,
Heidelberg (2012)

[7] Brakerski, Z., Gentry, C., Halevi, S.: Packed ciphertexts in lwe-based ho-
momorphic encryption. In: Public-Key Cryptography PKC 2013, Lecture
Notes in Computer Science, vol. 7778, pp. 1–13. Springer Berlin Heidelberg
(2013)

[8] Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption
from (standard) lwe. In: Proceedings of the 2011 IEEE 52Nd Annual Sym-
posium on Foundations of Computer Science. pp. 97–106. FOCS ’11, IEEE
Computer Society, Washington, DC, USA (2011)

[9] Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption
from ring-lwe and security for key dependent messages. In: Pro-
ceedings of the 31st Annual Conference on Advances in Cryptology.
pp. 505–524. CRYPTO’11, Springer-Verlag, Berlin, Heidelberg (2011),
http://dl.acm.org/citation.cfm?id=2033036.2033075

19

[10] Gentry, C.: Computing on encrypted data. In: Proceedings of the 8th
International Conference on Cryptology and Network Security. pp. 477–
477. CANS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

[11] Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stan-
ford, CA, USA (2009), aAI3382729

[12] Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Pro-
ceedings of the Forty-first Annual ACM Symposium on Theory of Com-
puting. pp. 169–178. STOC ’09, ACM, New York, NY, USA (2009),
http://doi.acm.org/10.1145/1536414.1536440

[13] Gentry, C., Halevi, S.: Fully homomorphic encryption without squashing
using depth-3 arithmetic circuits. In: Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science. pp. 107–109.
FOCS ’11, IEEE Computer Society, Washington, DC, USA (2011)

[14] Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryp-
tion scheme. In: Proceedings of the 30th Annual International Conference
on Theory and Applications of Cryptographic Techniques: Advances in
Cryptology. pp. 129–148. EUROCRYPT’11, Springer-Verlag, Berlin, Hei-
delberg (2011), http://dl.acm.org/citation.cfm?id=2008684.2008697

[15] Gentry, C., Halevi, S., Peikert, C., Smart, N.P.: Ring switching in bgv-
style homomorphic encryption. In: Proceedings of the 8th International
Conference on Security and Cryptography for Networks. pp. 19–37. SCN’12,
Springer-Verlag, Berlin, Heidelberg (2012)

[16] Gentry, C., Halevi, S., Smart, N.P.: Better bootstrapping in fully homo-
morphic encryption. In: Proceedings of the 15th International Conference
on Practice and Theory in Public Key Cryptography. pp. 1–16. PKC’12,
Springer-Verlag, Berlin, Heidelberg (2012)

[17] Gentry, C., Halevi, S., Smart, N.P.: Fully homomorphic encryption with
polylog overhead. In: Proceedings of the 31st Annual International Con-
ference on Theory and Applications of Cryptographic Techniques. pp. 465–
482. EUROCRYPT’12, Springer-Verlag, Berlin, Heidelberg (2012)

[18] Gentry, C., Halevi, S., Smart, N.P.: Homomorphic Evaluation of the AES
Circuit, pp. 850–867. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

[19] Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning
with errors: Conceptually-simpler, asymptotically-faster, attribute-based.
In: Canetti, R., Garay, J. (eds.) Advances in Cryptology CRYPTO 2013,
Lecture Notes in Computer Science, vol. 8042, pp. 75–92. Springer Berlin
Heidelberg (2013)

[20] Halevi, S., Shoup, V.: Algorithms in helib. In: Garay, J., Gennaro, R.
(eds.) Advances in Cryptology CRYPTO 2014, Lecture Notes in Computer
Science, vol. 8616, pp. 554–571. Springer Berlin Heidelberg (2014)

[21] Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar Signature
Schemes, pp. 206–222. Springer Berlin Heidelberg (1999)

20

[22] Lauter, K., Lopez-Alt, A., Naehrig, M.: Private com-
putation on encrypted genomic data. Tech. rep. (2014),
http://research.microsoft.com/apps/pubs/default.aspx?id=219979

[23] López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty
computation on the cloud via multikey fully homomorphic encryption. In:
In STOC. pp. 1219–1234 (2012)

[24] Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning
with errors over rings. In: In Proc. of EUROCRYPT, volume 6110 of LNCS.
pp. 1–23. Springer (2010)

[25] Stehlé, D., Steinfeld, R.: Making NTRU as Secure as Worst-Case Problems
over Ideal Lattices, pp. 27–47. Springer Berlin Heidelberg, Berlin, Heidel-
berg (2011)

[26] Thomae, E., Wolf, C.: Solving Underdetermined Systems of Multivariate
Quadratic Equations Revisited, pp. 156–171. Springer Berlin Heidelberg
(2012)

[27] Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.:
Secure pattern matching using somewhat homomorphic encryption. In:
Proceedings of the 2013 ACM Workshop on Cloud Computing Security
Workshop. pp. 65–76. CCSW ’13, ACM, New York, NY, USA (2013),
http://doi.acm.org/10.1145/2517488.2517497

21

