
ECRYPT Hash Workshop 2007 (May 24–25 2007, Barcelona, Spain)
V. Rijmen, chair. Workshop Proceedings, pages 4–19.

Revisiting Security Relations Between Signature Schemes and their
Inner Hash Functions

Emmanuel Bresson3 and Benôıt Chevallier-Mames1 and Christophe Clavier1 and Blandine Debraize1 and
Pierre-Alain Fouque4 and Louis Goubin1 and Aline Gouget1 and Gaetan Leurent4 and Phong Nguyen4 and

Pascal Paillier1 and Thomas Peyrin2 and Sébastien Zimmer4

1 Cryptography and Innovation, Gemalto Security Labs
2 France Telecom Division R&D

3 DCSSI
4 Ecole Normale Supérieure

Abstract. After years of almost full confidence in the security of common hash functions such as MD5
and SHA-1, the cryptographic community is now facing the unprecedented threat of seeing practical security
applications succumb to concrete attacks. A way to cope with this crisis is to fasten the development of new
hash functions, but another crucial task is to assess the implications these attacks on hash functions may have
on cryptographic systems. This paper reports a thorough investigation on how recent attacks on hash functions
impact the security of signature schemes. We suggest the notion of probabilistic hash-and-sign signatures and
further classify signature schemes into various related categories which allow us to identify completely the
nature of security relations between signature schemes and their inner hash functions. We also determine how
using iterated hash functions a la Merkle-Damg̊ard impacts the security of deterministic (resp. probabilistic)
hash-and-sign signatures. We confirm that the security gain inherent to using the probabilistic hash-and-sign
paradigm may be lost completely if instantiated with a Merkle-Damg̊ard hash function and unwise operating
mode.

1 Introduction

Undoubtedly, hash functions constitute an essential component of all sorts of systems and constructions in cryptog-
raphy, should these stand in the public-key or secret-key paradigm. From basic primitives (encryption, signatures,
commitments, etc) to advanced protocols (fair exchange, ecash, multiparty computations and so forth), they have
spread all over the place, appreciated for the many and very different properties one expects these functions to
fulfill. In [32] more than 50

Since the early days of modern cryptography however, the design of hash functions has remained mostly heuris-
tical and for a large part based on ideas and concepts arising from the design of block ciphers. Even if most hash
functions were conceived with little more than a paper and a pencil, a large confidence in the security of some hash
functions such as SHA-1 has long been shared in the cryptographic community. The very few concrete attacks on
trusted hash functions that came to public attention for more than a decade definitely played a role in reinforcing
this belief.

Recently however, initiated by the works of Chabaud and Joux [10] and later Biham and Chen [4], powerful
attack techniques were suddenly discovered and reported by Wang [38]. Applicable to a wide range of hash functions
and leading sometimes to unexpectedly low workfactors, new attacks are now progressively emerging which collect
and assemble techniques of independent nature [39,40,15,25,28]. It is now clear that hash functions designs cannot
be trusted without adequate public scrutiny and the confidence is low that commonly used hash functions such as
the SHS standard SHA-1 can withstand cryptanalytic efforts for ever [16].

How broken hash functions impact cryptosystems. Because of the systematic appearance of hash functions
in cryptographic constructions, the security of a large variety of systems is now at risk [21, 37]. However the role
played by hash functions in the overall security of a system is, in many constructions, so badly understood that it
is not obvious at all to see how that system suffers from being based on broken hash functions. Does the security
of the OAEP padding (used in conjunction with a trapdoor permutation to yield random-oracle secure encryption)
vanish when a collision on one of the inner hash functions is discovered?

The goal of our work is to explore the interplay between these two fundamental concerns: the security of a
cryptographic system S = S[H1, . . . ,Hn] based on hash functions H1, . . . ,Hn and the security of H1, . . . ,Hn.

Assuming for instance that a scheme S involves a unique hash function H, we want to determine how the security
of H relates to the one of S. This amounts to computationally connect security notions for S with security notions
for H. Our approach is to exhaust all these connections (at least all the ones we can see) which we categorize into
the four following types:

1. an attack, which we define as a polynomial reduction Break(H) ≥ Break(S) for well-defined security notions1.
In this case, our reduction makes explicit how an attack of a given type on the hash function is enough to break
the scheme in a prescribed way;

2. a security proof that is, a polynomial reduction Break(H) ≤ Break(S). Here, the reduction tells there is no
attack of a certain type on S unless one finds a particular weakness in H;

3. an impossibility of attack, namely a means to show that there is no reduction Break(H) ≥ Break(S). This is
usually done based on a meta-reduction [12]: if Break(H) ≥R Break(S) then R ≥M P where P is an auxiliary
computational problem (hence this technique requires an extra assumption);

4. an impossibility of security proof i.e. evidence that a polynomial reduction Break(H) ≤ Break(S) does not exist
(using the meta-reduction technique as well).

We view 2. and 3. as positive security results and 1. and 4. as negative security results.

Our contributions. This paper only deals with signature schemes. The overall goal of our work is to report
as clearly as possible the implications of the current crisis in the field of hash functions and identify the new
threats signature schemes are facing in practice. Applying the approach described above, we provide a number of
(reductionist) relations between the security profile2 of a signature scheme S = S[H] and the security profile of the
hash function H (we also suggest convenient security notions for hash function families on our way). We find that
these relations heavily depend on the way S makes use of H. We therefore classify signature schemes into different
categories: deterministic hash-and-sign signatures and probabilistic hash-and-sign signatures. We also introduce the
properties of primitiveness and injectivity which enlarge the scope of certain security relations. Our classification
remains as general as possible while capturing the case of signature schemes of common practice such as RSA-PSS
or ECDSA. The security relations we expose in this paper confirm that all signature schemes are not implicated on
the same level by the recent attacks on hash functions.

We also determine how using iterated hash functions a la Merkle-Damg̊ard impacts the security of determin-
istic (resp. probabilistic) hash-and-sign signatures. Our motivation here is to identify more specific results in the
case of functions such as MD5 and SHA-1. We confirm that the security gain inherent to using the probabilistic
hash-and-sign paradigm may be lost completely if instantiated with a Merkle-Damg̊ard hash function and unwise
operating mode. We finally give concrete attack workloads for attacking popular operating modes used in practical
implementations of signature schemes.

Roadmap. The next section provides a number of preliminary facts on security reductions. We remind definitions
for hash functions and adopt well-defined security notions in Section 3. In Section 4, we define the deterministic
versus probabilistic hash-and-sign paradigms and the notions of primitive and injective schemes. We then review
and classify a number of signature schemes based on these four basic concepts. Sections 5 and 6 present the security
relations between a hash-and-sign signature scheme and its inner hash function in the deterministic and probabilistic
cases respectively. Section 7 explores the particular case of Merkle-Damg̊ard hash functions as more specific results
can be stated in this context. We finally conclude with recommendations on the use of hash functions in signature
schemes.

2 Preliminary Notions of Provable Security

2.1 Black-Box Reductions

We adopt the concrete-security setting [], as opposed to the asymptotic one. Given a computational problem P ,
a probabilistic algorithm is said to (τ, ε)-solve3 P when it halts after at most τ elementary steps and outputs a
1 More details on reductions are found in the next section.
2 The hierarchy of all the security levels related to a scheme.
3 We may say (τ, ε)-break P when P is a security related problem.

2

solution of P with success probability at least ε. The execution time τ relates to some fixed model of computation.
Succ (P, τ) denotes the maximal success probability taken over all probabilistic algorithms solving P in no more
than τ elementary steps. A concrete black-box4 reduction R between two computational problems P1 and P2 is
a probabilistic algorithm R which (τ1, ε1)-solves P1 given black-box access to an oracle (τ2, ε2)-solving P2. We
write P1 ≤R P2 when R is known to reduce P1 to P2 with polynomial reduction cost, meaning that τ1 = poly (τ2)
and ε1 = poly (ε2) where the polynomials may depend on additional reduction parameters. Note that R can be
polynomial even when no algorithm (τ2, ε2)-solving P2 is known to exist. P1 ≤ P2 states that a polynomial R exists
such that P1 ≤R P2 and P1 ≡ P2 means P1 ≤ P2 and P1 ≥ P2. We write P1 ≤R P2 ∧ P3 ∧ · · · ∧ Pn when R solves
P1 given oracle access to solvers for P2, . . . , Pn and τ1 = poly (τ2, . . . , τn), ε1 = poly (ε2, . . . , εn). Relation ≤ is a
transitive ordering among computational problems. Given a function f with t inputs, Time (f, `1, . . . , `t) stands
for the minimum, taken over all algorithms Af computing f , of the worst case running time of Af for inputs of
respective bitlength `1, . . . , `t.

2.2 Constructive Security Reductions

Let P1, P2 be two computational problems. We defined earlier the predicate P1 ≤ P2 as
(
∃R : P1 ≤R P2

)
where

we recall that P1 ≤R P2 implies that R is polynomial. A provable-security statement P1 ≤ P2 (where P1 and P2

are now security-related problems) therefore indicates that if an efficient solver for P2 exists then an efficient solver
for P1 exists as well. Such a statement is meaningful when there are reasons to believe that P1 cannot be solved
efficiently. When efficient solvers for P1 are known to exist, however, the security statement vacuously holds. So is
the statement P1 ≤ P2 of any interest in this case?

Well, P1 ≤ P2 is still meaningful if a) such an efficient solver for P1 exists but is unknown and seems hard to
construct, b) the proof of P1 ≤ P2 is constructive meaning that an explicit black-box reduction R is given such that
P1 ≤R P2. The statement can then be reinterpreted by saying that if one had access to an effective solver for P2

then an effective solver for P1 would be found. P2 then remains unsolvable under the assumption that an effective
solver for P1 is hard to construct under current human knowledge. Note that this formulation is stronger than the
previous, existential formulation. It implies for instance that R can be used as a compiler which, given the source
code of a program solving P2, can be used to build a program solving P1. We refer to [33] for more detail. From
now on, P1 ⇐ P2 states that we know a constructive proof for P1 ≤ P2, meaning

(
∃R : P1 ≤R P2

)
and such an R

is explicitly given by its pseudo-code in the proof. Constructive polynomial equivalence is noted P1 ⇔ P2.

2.3 The Random Oracle Model

The random oracle (RO) model was implicitly introduced by Fiat and Shamir [18] and later formalized by Bellare
and Rogaway [1]. It has been extensively used since. By opposition to using a fully detailed specification of a
cryptosystem (its standard-model description), the RO model abstracts away the description of certain components
such as hash functions or pseudo-random generators by making them external to the cryptosystem under the form
of oracles. Generating or verifying a signature (and possibly generating keys as well) then requires oracle calls. It is
striking to observe that (with a few exceptions) the intensive use of the RO model has rendered innocuous the use
of hash functions in cryptographic designs. In the RO model, studying the security relations between a construction
and its inner hash functions is completely vacuous. We therefore stick to the standard model in our investigations.

3 Hash Functions and Related Security Notions

We first give a number of definitions related to hash functions. We clarify that hash functions (as per our definitions)
only handle bitstrings and must be composed with other specific formatting functions to form integer arrays, group
elements, etc. The following formal notions of a hash function, a compression function and an iterated hash function
are similar to those given by Black, Rogaway and Shrimpton in [5].

Definition 1 (Hash function). A function H is a hash function if it maps {0, 1}∗ (the set of finite bitstrings) to
{0, 1}m (the set of m-bit strings) for some integer m > 0 called the output size of H.

4 All reductions considered in this paper are concrete and fully black-box.

3

Definition 2 (Compression function). A compression function is a function f : {0, 1}m × {0, 1}b → {0, 1}m
where m, b are integers such that m > 0 and b > 0.

Definition 3 (Iterated hash function). Let f : {0, 1}m × {0, 1}b → {0, 1}m be a compression function. Given
an arbitrary function g : {0, 1}∗ → ({0, 1}b)∗ and IV0 ∈ {0, 1}m, the iterated hash function H constructed from
(f, g, IV0) is the hash function defined for M ∈ {0, 1}∗ by H(M) = ht where X1||...||Xt = g(M), h0 = IV0 and
hi = f(hi−1, Xi) for i ∈ [1.. t]. We call b the block size of H.

3.1 Security Notions for Hash Functions

The definitions for (second) preimage-resistance and for collision-resistance were given by Brown in [9] and appear
under various forms in [29]. These definitions are somewhat simplified here because we only deal with fixed hash
functions rather than families of hash functions. Subsequently, the related security assumptions, most particularly
the assumption about collision-resistance, are stronger than the usual assumptions for hash functions families.

Definition 4 (Preimage-resistance PREn [H]). Let H : {0, 1}∗ → {0, 1}m be a hash function. The preimage
problem PREn [H] consists, given a random m ← {0, 1}m in finding an n-bit string M such that H(M) = m.
Formally,

Succ (PREn [H] , τ) = max
AH

Pr
[
m← {0, 1}m;M ← AH(m) :

(
M ∈ {0, 1}n

)
∧

(
H(M) = h

)]
where the probability is taken over the random choices of m and AH and the maximum is taken over all τ -time
probabilistic algorithms AH . H is said to be (τ, ε)-preimage-resistant on {0, 1}n if Succ (PREn [H] , τ) < ε.

Definition 5 (Second-preimage-resistance SECn2
n1

[H]). The second preimage problem SECn2
n1

[H] consists, given
a random M1 ← {0, 1}n1 in finding M2 ∈ {0, 1}n2 such that H(M2) = H(M1) and M2 6= M1. Let us pose

Succ
(
SECn2

n1
[H] , τ

)
= max

AH

Pr
[
M1 ← {0, 1}n1 ;M2 ← AH(M1) :

(
M2 ∈ {0, 1}n2 \ {M1}

)
∧

(
H(M2) = H(M1)

)]
where the probability is taken over the random choices of M1 and AH and the maximum is taken over all τ -time
adversaries AH . H is said to be (τ, ε)-second-preimage-resistant with respect to (n1, n2) if Succ

(
SECn2

n1
[H] , τ

)
< ε.

For clarity, all security problems parameterized by the bitsize of their inputs or outputs are written with input
sizes as subscripts and outputs sizes as superscripts.

Definition 6 (Collision-resistance COLn1,n2 [H]). Solving the collision-finding problem COLn1,n2 [H] consists in
finding M1 ∈ {0, 1}n1 and M2 ∈ {0, 1}n2 such that M1 6= M2 and H(M1) = H(M2). We then call (M1,M2) an
(n1, n2)-collision. For any probabilistic algorithm AH , let

SuccCOLn1,n2 [H] (AH) = Pr
[
(M1,M2)← AH() :

(
M1 ∈ {0, 1}n1

)
∧

(
M2 ∈ {0, 1}n2 \ {M1}

)
∧

(
H(M2) = H(M1)

)]
where the probability is taken over the random choices of AH . We say that AH (τ, ε)-solves COLn1,n2 [H] if AH

runs in time at most τ and SuccCOLn1,n2 [H] (AH) ≥ ε.

It is well-known that defining (τ, ε)-collision-resistance for (unkeyed) hash functions using an existential formu-
lation i.e. by saying that

Succ (COLn1,n2 [H] , τ) = max
AH

SuccCOLn1,n2 [H] (AH) < ε (1)

is futile [33]. Indeed either H admits no (n1, n2)-collision in which case SuccCOLn1,n2 [H] (AH) = 0 for any AH (and
COLn1,n2 [H] is trivially unsolvable), or there always exists AH which simply outputs a fixed ”hardwired” (n1, n2)-
collision (M1,M2). So in this case Succ (COLn1,n2 [H] , τ) as defined above equals 1 as soon as τ exceeds the time
needed to print these two strings. We therefore adopt the human ignorance (or explicit reduction) approach of [33]
which amounts to state security reductions in terms of knowledge. We elaborate on this in Section 2.2.

H is said (τ, ε)-collision-resistant with respect to (n1, n2)-collisions if no explicit τ -time adversary AH is known
such that SuccCOLn1,n2 [H] (AH) ≥ ε. Alternately, one can rely on (1) by restricting the maximum to adversaries
known to man. Note that by the birthday paradox, we know a collision-finding algorithmAH with success probability
ε = 1/2 and running time τ ' 2m/2. So no hash function H : {0, 1}∗ → {0, 1}m is (2m/2, 2−1)-collision-resistant for
general n1, n2’s.

4

Lemma 7. Let H : {0, 1}∗ → {0, 1}m be a hash function. Then for any n1, n2 > 0,

COLn1,n2 [H]⇐ SECn2
n1

[H] ,SECn1
n2

[H] and SECn2
n1

[H]⇐ PREn2 [H] .

Proof.
(
COLn1,n2 [H]⇐ SECn2

n1

)
. Assuming a (τ2, ε2)-solver A2 for SECn2

n1
[H], one builds a reduction algorithm A1

which (τ1, ε1)-solves COLn1,n2 [H] with ε1 = ε2 and τ1 = τ2 +Time (rand, n1) as follows. On no input, A1 uniformly
selects M1 ← {0, 1}n1 , runs M2 ← A2(M1) and returns (M1,M2). A proof that SECn2

n1
[H] ⇐ PREn2 [H] is given

for instance in [34]. To yield an efficient reduction, however, it is required that n1, n2 � m. ut

3.2 Hash Function Families and Related Security Notions

We recall the definition of a hash function family.

Definition 8 (Hash function family). A hash function family F is a function F : {0, 1}∗ × {0, 1}r → {0, 1}m
for integers m, r > 0 such that for any r ∈ {0, 1}r, F (·, r) is a hash function of output size m.

The second argument r in F (M, r) is called the index (or key) of F . We define a collection of security notions
with respect to a hash function family F with index space {0, 1}r. As for unkeyed hash functions, one essentially faces
notions of preimage, second preimage and collision resistance. These security notions are defined in the concrete
setting using (τ, ε)-adversaries.

Definition 9 (Existential Preimage Resistance E-PREn [F]). Breaking E-PREn [F] consists, given a random
m← {0, 1}m in finding a pair (M, r) ∈ {0, 1}n × {0, 1}r such that F (M, r) = m. Formally,

Succ (E-PREn [F] , τ) = max
AF

Pr
[
m← {0, 1}m, (M, r)← AF (m) :

(
|M | = n

)
∧

(
|r| = r

)
∧

(
F (M, r) = m

)]
where the probability is taken over the random choices of m and AF and the maximum is taken over all τ -time prob-
abilistic algorithms AF . F is said to be (τ, ε)-existentially preimage-resistant on {0, 1}n if Succ (E-PREn [F] , τ) < ε.

Definition 10 (Universal Preimage Resistance U-PREn [F]). Breaking U-PREn [F] consists, given random
m← {0, 1}m and r ← {0, 1}r, in finding an n-bit string M such that F (M, r) = m. We define

Succ (U-PREn [F] , τ) = max
AF

Pr
[
m← {0, 1}m, r ← {0, 1}r,M ← AF (m, r) :

(
|M | = n

)
∧

(
F (M, r) = m

)]
,

the probability being taken over the random choices of m, r and AF and the maximum over τ -time probabilistic
algorithms AF . F is said to be (τ, ε)-universally preimage-resistant on {0, 1}n if Succ (U-PREn [F] , τ) < ε.

Definition 11 (Existential Second Preimage Resistance E-SECn2
n1

[F]). Breaking E-SECn2
n1

[F] consists, given
a random M1 ← {0, 1}n1 in finding (M2, r) ∈ {0, 1}n2 × {0, 1}r such that F (M2, r) = F (M1, r) and M2 6= M1. Let

Succ
(
E-SECn2

n1
[F] , τ

)
= max

AF

Pr
[

M1 ← {0, 1}n1

(M2, r)← AF (M1)
:

(
|M2| = n2

)
∧

(
|r| = r

)
∧

(
M2 6= M1

)
∧

(
F (M2, r) = F (M1, r)

)]
,

the probability being taken over the random choices of M1 and AF and the maximum over all τ -time AF ’s. F is
said to be (τ, ε)-existentially-second-preimage-resistant with respect to (n1, n2) if Succ

(
E-SECn2

n1
[F] , τ

)
< ε.

Definition 12 (Universal Second Preimage Resistance U-SECn2
n1

[F]). Given a random pair (M1, r) ←
{0, 1}n1 × {0, 1}r, find M2 ∈ {0, 1}n2 \ {M1} such that F (M2, r) = F (M1, r) and M2 6= M1:

Succ
(
U-SECn2

n1
[F] , τ

)
= max

AF

Pr

 M1 ← {0, 1}n1

r ← {0, 1}r
M2 ← AF (M1, r)

:
(
|M2| = n2

)
∧

(
M2 6= M1

)
∧

(
F (M2, r) = F (M1, r)

) ,

the probability being taken over the random choices of (M1, r) and AF and the maximum over all τ -time AF ’s. F
is said to be (τ, ε)-universally-second-preimage-resistant with respect to (n1, n2) if Succ

(
U-SECn2

n1
[F] , τ

)
< ε.

5

Definition 13 (Absolute Second Preimage Resistance A-SECn2
n1

[F]). Given a random M1 ← {0, 1}n1 , find
M2 ∈ {0, 1}n2 such that F (M2, r) = F (M1, r) for any r ∈ {0, 1}r:

Succ
(
A-SECn2

n1
[F] , τ

)
= max

AF

Pr
[

M1 ← {0, 1}n1

M2 ← AF (M1)
:

(
|M2| = n2

)
∧

(
M2 6= M1

)
∧

(
F (M2, ·) , F (M1, ·)

)]
,

the probability being taken over the random choices of M1 and AF and the maximum over all τ -time AF ’s. F is
said to be (τ, ε)-absolutely-second-preimage-resistant with respect to (n1, n2) if Succ

(
A-SECn2

n1
[F] , τ

)
< ε.

Existential, universal and absolute collision-resistance are defined along the same lines:

Definition 14 (Existential Collision-resistance E-COLn1,n2 [F]). Solving E-COLn1,n2 [F] consists in finding
M1 ∈ {0, 1}n1 , M2 ∈ {0, 1}n2 and r ∈ {0, 1}r such that M1 6= M2 and F (M2, r) = F (M1, r). We then call
(M1,M2, r) an (n1, n2)-collision on F . For any probabilistic algorithm AF , let

Succ (E-COLn1,n2 [F] , τ) = max
AF

Pr
[

(M1,M2, r)← AF () :
(
|M1| = n1

)
∧

(
|M2| = n2

)
∧

(
M2 6= M1

)
∧

(
|r| = r

)
∧

(
F (M2, r) = F (M1, r)

)]
,

where the probability is taken over the random choices of AF and the maximum over all known τ -time AF ’s. F is
said to be (τ, ε)-existentially-collision-resistant with respect to (n1, n2) if Succ (E-COLn1,n2 [F] , τ) < ε.

Definition 15 (Universal Collision-resistance U-COLn1,n2 [F]). Breaking U-COLn1,n2 [F] consists, given a ran-
dom r ← {0, 1}r, in finding M1 ∈ {0, 1}n1 and M2 ∈ {0, 1}n2 such that M1 6= M2 and F (M2, r) = F (M1, r). For
any probabilistic algorithm AF , let

Succ (U-COLn1,n2 [F] , τ) = max
AF

Pr
[

r ← {0, 1}r
(M1,M2)← AF (r) :

(
|M1| = n1

)
∧

(
|M2| = n2

)
∧

(
M2 6= M1

)
∧

(
F (M2, r) = F (M1, r)

)]
,

where the probability is taken over the random choices of AF and the maximum over all τ -time AF ’s. F is said to
be (τ, ε)-universally-collision-resistant with respect to (n1, n2) if Succ (U-COLn1,n2 [F] , τ) < ε.

Definition 16 (Absolute Collision-resistance A-COLn1,n2 [F]). Solving A-COLn1,n2 [F] consists in finding M1∈
{0, 1}n1 and M2 ∈ {0, 1}n2 such that M1 6= M2 and F (M2, r) = F (M1, r) for any r ∈ {0, 1}r. We then call (M1,M2)
an (n1, n2)-absolute collision on F . For any probabilistic algorithm AF , let us define

Succ (A-COLn1,n2 [F] , τ) = max
AF

Pr
[

(M1,M2)← AF () :
(
|M1| = n1

)
∧

(
|M2| = n2

)
∧

(
M2 6= M1

)
∧

(
F (M2, ·) , F (M1, ·)

)]
,

where the probability is taken over the random choices of AF and the maximum over all known τ -time AF ’s. F is
said to be (τ, ε)-absolutely-collision-resistant with respect to (n1, n2) if Succ (A-COLn1,n2 [F] , τ) < ε.

Theorem 17. These security notions are connected via constructive black-box reductions as show on Fig. 1.

E-PREn2 [F] ⇐ U-PREn2 [F]

⇓ ⇓

E-SECn2
n1 [F] ⇐ U-SECn2

n1 [F] ⇐ A-SECn2
n1 [F]

⇓ ⇓ ⇓

E-COLn1,n2 [F] ⇐ U-COLn1,n2 [F] ⇐ A-COLn1,n2 [F]

Fig. 1. Relations among security notions for hash function families

We finally note that U-PRE, U-SEC and U-COL are identical to the notions Pre, Sec and Coll of [34].

6

4 Hash-and-Sign Signatures and Related Security Notions

4.1 Definitions

This section gives a number of definitions for signature schemes. In particular, we define the notion of probabilistic
hash-and-sign signatures which can be seen as a generalization of well-known hash-and-sign signatures (we will adopt
the term of deterministic hash-and-sign signatures to designate those). It is crucial to note here that the notions of
probabilistic (resp. deterministic) hash-and-sign signatures have nothing to do with the notions of probabilistic (resp.
deterministic) signatures. The signature schemes we consider are most of the time probabilistic unless otherwise
stated. What we care about is in fact the probabilistic or deterministic nature of their hash-and-sign mechanism.
To avoid any confusion, we make use of distinct notations H(M) or F (M, r) when referring to the hash function
involved in a hash-and-sign signature scheme.

Definition 18 (Signature scheme). A signature scheme S with message space M ⊆ {0, 1}∗ is identified to a
tuple S , (S.Gen,S.Sign,S.Ver) of algorithms. S.Gen() is a probabilistic algorithm which takes no input and outputs
a pair of strings (pk, sk). A signature on message M ∈M is an s-bit string σ = S.Sign(sk,M, u) where u← {0, 1}u.
S.Ver(pk,M, σ) outputs 1 if σ = S.Sign(sk,M, u) for some u ∈ {0, 1}u, 0 otherwise. The message space is either
M = {0, 1}m for some integer m > 0 or M = {0, 1}∗ when messages can be of arbitrary length.

Definition 19 (Deterministic hash-and-sign signatures). A deterministic hash-and-sign signature scheme is
a pair S = 〈H,Σ〉 where H : {0, 1}∗ → {0, 1}m is a hash function and Σ is a fixed-length signature scheme signing
m-bit messages under u bits of randomness. S.Gen , Σ.Gen and a signature on M ∈ {0, 1}∗ with respect to S is
computed as σ = Σ.Sign(sk,m, u) where m = H(M) and u← {0, 1}u. S.Ver(pk,M, σ) outputs Σ.Ver(pk,H(M), σ).
Therefore S supports arbitrary-length messages.

We view the deterministic hash-and-sign paradigm as a scheme compiler which, taking a hash function H
and a fixed-length, message-space-compatible signature scheme Σ as inputs, builds the domain-extended scheme
S = 〈H,Σ〉. To properly capture probabilistic hash-and-sign signatures in the same fashion, we first need to take
a closer look at the inner computations of a signature scheme.

Definition 20 (Two-step signatures). A signature scheme S with message space M ⊆ {0, 1}∗ is said to be
two-step if

i) there exist two deterministic algorithms S1, S2 such that for any pair (M,u) ∈ M× {0, 1}u, S.Sign(sk,M, u) =
S2(sk,M, r, aux) where (r, aux) = S1(sk, u) and r ∈ {0, 1}r. We impose that r is uniform over {0, 1}r if u is
uniform over {0, 1}u;

ii) there exist two deterministic algorithms V1, V2 such that S.Ver(pk,M, σ) = V2(pk,M, σ, r̂) where r̂ = V1(pk, σ);

iii) if there exists u ∈ {0, 1}u such that σ = S.Sign(sk,M, u) then the strings r, r̂ such that (r, aux) = S1(sk, u) for
some aux and r̂ = V1(pk, σ) are equal. We define the type of S as (m, u, r, s) if M = {0, 1}m and (∗, u, r, s) if
M = {0, 1}∗.

The property of being two-step seems totally unrestrictive as we do not know any example of a non-two-step
signature scheme. Definition 20 merely serves at introducing notations.

Definition 21 (Probabilistic hash-and-sign signatures). A probabilistic hash-and-sign signature scheme is a
pair S = 〈F,Σ〉 where F : {0, 1}∗ × {0, 1}r → {0, 1}m is a hash function family with index space {0, 1}r and Σ is a
two-step signature scheme of type (m, u, r, s) for integers u, s > 0. The key generation of S is identical to the one of
Σ. Let Σ1, Σ2, Υ1, Υ2 be the inner functions of Σ. A signature on M ∈ {0, 1}∗ is computed as σ = Σ2(sk,m, r, aux)
where m = F (M, r), (r, aux) = Σ1(sk, u) and u ← {0, 1}u. S.Ver(pk,M, σ) first computes r̂ = Υ1(pk, σ), then
m̂ = F (M, r̂) and outputs Υ2(pk, m̂, σ, r̂).

It is easily checked that S = 〈F,Σ〉 is a two-step signature scheme of type (∗, u, r, s) with inner functions S1 , Σ1,
S2(sk,M, r, aux) = Σ2(sk, F (M, r), r, aux), V1 , Υ1 and V2(pk,M, σ, r̂) = Υ2(pk, F (M, r̂), σ, r̂). Also, deterministic
hash-and-sign signatures can be seen as a particular case of probabilistic hash-and-sign signatures where the index
space of F is empty i.e. when F (M, r) = H(M). Definition 21 is then easily reformulated in the terms of Definition
19 by posing aux , u, r = 0 and r = ∅ (thus letting Σ1(sk, u) = (∅, u)) and setting Σ2 , Σ.Sign, Υ1 , ∅ and
Υ2 , Σ.Ver. We now define two additional properties that will be essential in further sections.

7

Definition 22 (Primitiveness). Let S = 〈F,Σ〉 be a probabilistic hash-and-sign signature scheme and let Σ1, Σ2,
Υ1, Υ2 be the inner functions of Σ. S is said to be τ -primitive when we know a τ -time probabilistic algorithm S.Prim
which, for all pairs (pk, sk)← S.Gen(), takes pk as input and outputs a random pair (m,σ = S.Sign(sk,m, u)) such
that a) m is uniformly distributed over {0, 1}m; b) u is uniformly distributed over {0, 1}r.

Note that S being primitive implies that Σ is existentially forgeable (EF)under a key-only attack (KOA). In
essence, if S = 〈F,Σ〉 is primitive then replacing F by the identity function structurally destroys the EF-KOA
security of the modified scheme. This notion captures the intuition that F somehow plays an important role in the
EF-KOA security of S.

Definition 23 (Injectivity). Let S = 〈F,Σ〉 be a probabilistic hash-and-sign signature scheme and Σ1, Σ2, Υ1,
Υ2 as above. S is said to be injective when for any key pair (pk, sk) and any σ ∈ {0, 1}s, there exists at most one
pair (m, r) ∈ {0, 1}m × {0, 1}r such that σ = Σ2(sk,m, r, aux) and (r, aux) = Σ1(sk, u) for some u, aux.

It appears that most signature schemes used in practice, beside being probabilistic hash-and-sign schemes, are
also primitive and injective. This is at least the case with Schnorr, FDH and PSS signatures. Other practical
schemes such as DSA or GHR are also of interest but do not seem to be primitive. This observation motivates us
to categorize signatures schemes according to the four definitions above and study these separately.

4.2 Classifying Common Signature Schemes

Signature schemes obtained by applying the Fiat-Shamir transform to 3-move identification protocols are a typical
example of probabilistic hash-and-sign signatures that are both primitive and injective. Some variants of Fiat-
Shamir-converted schemes such as KCDSA also fall in this category. Finally, all classical hash-then-invert signature
schemes based on a trapdoor one-way permutation such as PSS are complete in the sense of Definitions 22 and 23
as well. Other schemes are not. To illustrate this variety, we review and characterize the signature schemes most
commonly found in good cryptographic practice. We report our classification results on Table 1.

Signature
Scheme

Deterministic
Hash-and-Sign

Probabilistic
Hash-and-Sign

Primitive Injective

Schnorr × × ×
FDH × × ×
PFDH × × ×
PSS × × ×
EMSA-PSS × × ×
BLS × × ×
Generic DSA × ×
GHR × ×
CS ×

Table 1. A classification of common signature schemes

We refer to Appendix A for a description of these signature schemes and evidence of their classification.

4.3 Security Notions for Signatures

We recall the security notions related to signature schemes that will be of interest in this paper. Security notions
combine an adversarial goal with an attack model. The attacker is seen as a probabilistic polynomial time algorithm
attempting to fulfill its goal while being given a number of computational resources. The attacker may interact
with the scheme in different ways.

8

Adversarial goals. A signature scheme is said to be universally forgeable (UF) when there exists an adversary
that returns a valid signature on a randomly chosen message M ← M given as input. When M = {0, 1}∗, M
is uniformly selected from {0, 1}n for finite n > 0, thus defining a collection of goals {UFn}n>0. The notion of
existential forgery EF (resp. {EFn}n>0) is similar to UF but allows the adversary to choose freely the value of the
signed message.

We also consider non-repudiation, a scenario where the attacker is the signer itself and therefore knows the
secret key sk (See [27] for a general consideration on the subject). A universal repudiation (UR) occurs when,
given a random message M1 ← M, the adversary outputs a different message M2 ∈ M \ {M1} and a signature
σ such that σ is a valid signature on both M1 and M2. When M = {0, 1}∗, we draw M1 from {0, 1}n1 uniformly
at random, impose M2 ∈ {0, 1}n2 and define a collection of goals {URn2

n1
}n1,n2>0. An existential repudiation ER

(respectively {ERn1,n2}n1,n2>0) is a tuple (M1,M2, σ) where the adversary chooses M1,M2 ∈ M (respectively
M1 ∈ {0, 1}n1 ,M2 ∈ {0, 1}n2) and σ freely, with the obvious restriction M1 6= M2.

Attack models. We consider several attack scenarios. In a key only attack (KOA), the adversary is given nothing
else than a public key as input. A known message attack (KMA) consists in giving as input to the attacker a list
(M1, σ1), . . . , (M`, σ`) of random and pairwise distinct message-signature pairs. When M = {0, 1}∗, we draw Mi

from {0, 1}n for i ∈ [1.. `], thereby defining a collection of attacks {KMAn}n>0. In a chosen message attack (CMA),
the adversary is given adaptive access to a signing oracle.

Relations among security levels. We view security notions as computational problems. For instance UF-KMA [S]
is the problem of computing a universal forgery under known message attack. This notation allows to relate security
notions using reductions. In the case of KMA or CMA, we denote by `-GOAL-ATK [S] the problem of breaking GOAL
in no more than ` calls to the resource defined by ATK. Thus, breaking `-EF-CMA [S] authorizes at most ` calls
to the signing oracle to break EF. Fig. 2 displays the well-known black-box (and constructive) reductions among
security levels. Indices n1, n2 reflecting the caseM = {0, 1}∗ are to be removed ifM = {0, 1}m.

URn2
n1 [S] , URn1

n2 [S]

⇓

ERn1,n2 [S]

UFn1 -CMA [S] ⇐ UFn1 -KMAn2 [S] ⇐ UFn1 -KOA [S]

⇓ ⇓ ⇓

EFn1 -CMA [S] ⇐ EFn1 -KMAn2 [S] ⇐ EFn1 -KOA [S]

Fig. 2. Relations among security notions for signature schemes

5 Security Relations for Deterministic Hash-and-Sign Signatures

Our goal is to exhaust the security reductions standing between a deterministic hash-and-sign signature scheme
S = 〈H,Σ〉 and its inner hash function H. The signature scheme Σ plays the role of a parameter here. These
reductions may have three different flavors. First, we show how breaking certain security properties of H allows to
break the signature scheme (attacks). Then we show an equivalence between performing certain attacks on S and
finding security failures in the underlying hash function H (security proofs). We finally show that certain security
notions for S and H are computationally independent, meaning that they cannot be compared using black-box
reductions. This independence shows the non-existence of certain attacks and security proofs. We start by listing
attacks.

9

5.1 Attacking S = 〈H, Σ〉 by Attacking H

Lemma 24. Let S = 〈H,Σ〉 be a deterministic hash-and-sign signature scheme as per Definition 19. Then for any
integers n1, n2 > 0,

COLn1,n2 [H]⇒ 1-EFn1-CMA [S] , 1-EFn2-CMA [S] (2)
COLn1,n2 [H]⇒ ERn1,n2 [S] (3)

SECn2
n1

[H]⇒ 1-UFn1-CMA [S] (4)
SECn2

n1
[H]⇒ 1-EFn2-KMAn1 [S] (5)

SECn2
n1

[H]⇒ URn2
n1

[S] (6)

Proof (COLn1,n2 [H] ⇒ 1-EFn1-CMA [S]). Given a (τH , εH)-solver AH for COLn1,n2 [H] we build an EFn1-CMA
attacker AS breaking S with probability εS = εH and τS = τH + Time (S.Sign, n2) in exactly one call to the
signing oracle. Given a random public key pk← S.Gen(), our attacker AS runs AH to produce an (n1, n2)-collision
(M1,M2) such that M1 6= M2 and H(M1) = H(M2). Then AS requests a signature σ = Σ.Sign(sk,H(M2), u) on
M2 and produces σ as a valid signature on M1 6= M2. The same works with 1-EFn2-CMA as well by symmetry. ut

Proof (COLn1,n2 [H] ⇒ ERn1,n2 [S]). Given a (τH , εH)-collision-finder AH we build a repudiator AS breaking
ERn1,n2 [S] with probability εS = εH and time τS = τH + Time (S.Sign, n1). Given a random key pair (pk, sk) ←
S.Gen(), AS runs AH to build an (n1, n2)-collision. AS then signs M1 under randomness u ∈ {0, 1}u to get
σ = Σ.Sign(sk,H(M1), u) and outputs the tuple (M1,M2, σ). ut

Proof (SECn2
n1

[H]⇒ 1-UFn1-CMA [S]). Assume AH (τH , εH)-solves SECn2
n1

[H]. We build a UFn1-CMA attacker AS
which (τS , εS)-breaks S in one call to the signing oracle with εS = εH and τS = τH + Time (S.Sign, n2). Given a
public key pk← S.Gen() and M1 ← {0, 1}n1 , AS must produce a valid signature on M1. AS runs AH(M1) to build
a second preimage M2 6= M1 with |M2| = n2 and H(M2) = H(M1). AS then requests a signature on M2 and is
given σ = Σ.Sign(sk,H(M2), u) for some u ∈ {0, 1}u. AS then returns (M1, σ). ut

Proof (SECn2
n1

[H]⇒ 1-EFn2-KMAn1 [S]). Assuming AH (τH , εH)-solves SECn2
n1

[H], we build an attacker AS which
(τS , εS)-solves 1-EFn2-KMAn1 [S] with εS = εH and τS = τH . AS is given a random pk ← S.Gen() and a single
random message-signature pair (M1, σ) where M1 ← {0, 1}n1 and σ = Σ.Sign(sk,H(M1), u) for u ← {0, 1}u. AS
runs AH(M1) to construct a second preimage M2 6= M1 with |M2| = n2 and H(M2) = H(M1). AS then returns
the existential forgery (M2, σ). ut

Proof (SECn2
n1

[H]⇒ URn2
n1

[S]). Assuming AH (τH , εH)-solves SECn2
n1

[H], we build a (τS , εS)-repudiator AS which
on input a random key pair (pk, sk)← S.Gen() and a random message M1 ∈ {0, 1}n1 , returns a message M2 6= M1,
|M2| = n2 and σ such that σ is a valid signature on both M1 and M2. Here again, εS = εH and τS = τH +
Time (S.Sign, n2). AS runs AH on M1 to produce a second message M2 ∈ {0, 1}n2 with H(M1) = H(M2). AS then
produces a signature σ on M2 and outputs (M2, σ). ut

Lemma 25 (The case of primitive signatures). Let S = 〈H,Σ〉 be a deterministic hash-and-sign signature
scheme and assume that S is primitive. Then

∀n > 0, PREn [H]⇒ EFn-KOA [S] .

Proof (PREn [H] ⇒ EFn-KOA [S]). Assuming black-box access to AH which (τH , εH)-breaks PREn [H], we build
an EFn-KOA adversary AS which (τS , εS)-breaks S where εS = εH and τS = τH + Time (S.Prim). AS is given a
random key pk← S.Gen(). Since S is primitive,AS can generate a random pair (m,σ = Σ.Sign(sk,m, u)) by running
S.Prim(pk). Note that m is uniformly distributed over {0, 1}m. AS then runs AH(m) to produce M ∈ {0, 1}n such
that H(M) = m. AS outputs (M,σ). ut

5.2 Proving S = 〈H, Σ〉 Secure Assuming H Secure

We now turn to the positive security relations between S and H. As confirmed later in the paper, there seems to be
no security proof relating the unforgeability(-ies) of S to H. Nevertheless, we evidence that the levels of repudiation
of S can be guaranteed under security assumptions on H. This assumes, however, that S be injective.

10

Lemma 26 (The case of injective signatures). Let S be a deterministic hash-and-sign signature scheme and
assume S is injective. Then for any n1, n2 > 0,

COLn1,n2 [H]⇐ ERn1,n2 [S] (7)
SECn2

n1
[H]⇐ URn2

n1
[S] (8)

and therefore SECn2
n1

[H]⇔ URn2
n1

[S] and COLn1,n2 [H]⇔ ERn1,n2 [S] in virtue of (3) and (6).

Proof (COLn1,n2 [H]⇐ ERn1,n2 [S]). Let us assume an adversary AS which (τS , εS)-breaks ERn1,n2 [S]. We build a
collision-finder AH which (τH , εH)-breaks COLn1,n2 [H] with εH = εS and τH = τS + Time (S.Gen). AH generates
a random key pair (pk, sk) ← S.Gen() and runs AS(pk, sk). If AS outputs (M1,M2, σ) where M1 ∈ {0, 1}n1 ,
M2 ∈ {0, 1}n2 , M2 6= M1 and σ is a valid signature on M1 and M2, then AH discards σ and outputs (M1,M2). If σ
is a signature on M1 and M2 simultaneously then σ = Σ2(sk,H(M1), r1, aux1) = Σ2(sk,H(M2), r2, aux2) for some
aux1, aux2 and r1, r2 ∈ {0, 1}r. Since S is injective, one must have r1 = r2 and H(M1) = H(M2) so that (M1,M2)
is an (n1, n2)-collision. ut

Proof (SECn2
n1

[H] ⇐ URn2
n1

[S]). Assuming a (τS , εS)-universal repudiator AS , we build an algorithm AH which
(τH , εH)-breaks SECn2

n1
[H] with εH = εS and τH = τS+Time (S.Gen). Given a random M1 ← {0, 1}n1 ,AH generates

a random key pair (pk, sk) ← S.Gen() and runs AS(pk, sk,M1) to construct a pair (M2, σ) where M2 ∈ {0, 1}n2 ,
M2 6= M1 and σ is a valid signature on M1 and M2. The latter condition implies σ = Σ2(sk,H(M1), r1, aux1) =
Σ2(sk,H(M2), r2, aux2) for some aux1, aux2 and r1, r2 ∈ {0, 1}r. Since S is injective, one must have r1 = r2 and
H(M1) = H(M2) so that M2 yields an n2-bit second preimage of H(M1). AH then outputs M2. ut

5.3 Impossible Reductions Between Security Notions for S = 〈H, Σ〉 and H

Let S = 〈H,Σ〉 be a deterministic hash-and-sign signature scheme. The results above show that breaking H in the
strongest sense, namely breaking PRE [H], is enough to break EF-ATK [S] for ATK ∈ {KOA,KMA,CMA} as well as
UF-CMA [S] but seems insufficient to break either UF-KOA [S] or UF-KMA [S]. We now want to ascertain that it is
actually impossible for these two security levels to fall even when one assumes breaking PRE [H] is easy.

What does it take to break UF-KOA [S]? We consider UF-KOA [S] and show that this security level does not
fall when PRE [H] is broken. This impossibility is based on the following simple observation:

Lemma 27. For any n > 0, UFn-KOA [S]⇐ UF-KOA [Σ]⇐ PREn [H] ∧ UFn-KOA [S].

Proof. (Left ⇐). Given a (τΣ , εΣ)-universal forger AΣ for Σ, we build as follows a reduction algorithm AS which
(τS , εS)-breaking UFn-KOA [S] for any n > 0 with εS = εΣ and τS = τΣ+Time (H,n). Given a random M ← {0, 1}n,
AS computes m = H(M), runs AΣ(m) and outputs AΣ ’s output. (Right⇐). Assume we are given two probabilistic
algorithms AH and AS such that AH (τH , εH)-breaks PREn [H] and AS (τS , εS)-breaks UFn-KOA [S]. We construct
a reduction algorithm AΣ which (τΣ , εΣ)-breaks UF-KOA [Σ] with τΣ = εHεS and τΣ = τH + τS . Given a random
pk ← Σ.Gen and a random m ← {0, 1}m, AΣ runs AH(m) to get M ∈ {0, 1}n such that H(M) = m and runs
AS(M) to get σ = Σ(H(M), r) = Σ(m, r) for some r ∈ {0, 1}r.

We now see that a polynomial reduction R such that PREn [H] ≥R UFn-KOA [S] is very unlikely. Indeed,
assuming a reduction R1 converting an algorithm solving PREn [H] into an attacker AS against UFn-KOA [S], we
would build a second reduction R2 which converts AH into an algorithm breaking UF-KOA [Σ] with a similar
efficiency. Since H and Σ are two independent ingredients of S and because Σ is a scheme parameter here, such a
hierarchy does not exist. If it existed, then Σ and H would admit some form of “morphological interaction” such
as sharing identical components. This cannot be the case for general Σ’s. In fact, the only effect breaking PRE [H]
has on S is that for any n > 0, UFn-KOA [S]⇔ UF-KOA [Σ], thus rendering S exactly as secure as Σ in the sense
of UF-KOA security.

Can PRE [H] break UF-KMA [S] then? It is easily seen that the reductions of Lemma 27 cannot be readily
extended to security levels {UFn-KMA}n>0. If the reduction `-UFn-KMA [S]⇐ `-UF-KMA [Σ] stands for any n > 0
and ` ≥ 0, the only security reduction `-UF-KMA [Σ] ⇐ PREn [H] ∧ `-UFn-KMA [S] which seems to work consists
in converting the ` message-signature pairs given to the `-UF-KMA [Σ] attacker into a list of ` message-signature
pairs for S. This requires breaking PREn [H] exactly ` times, thereby introducing a ε`

H term in the reduction cost.
Such a reduction is therefore loose as ` grows and cannot be seen as efficient for large `’s. We leave this question
fully open.

11

6 Security Relations for Probabilistic Hash-and-Sign Signatures

We now move on to the case of a probabilistic hash-and-sign signature scheme S = 〈F,Σ〉 where similarly as in
the deterministic case, our goal is to relate the security of S to the one of its hash component F , the underlying
signature scheme Σ being seen as a fixed parameter. Σ1, Σ2, Υ1 and Υ2 denote the inner functions of Σ.

6.1 Attacking S = 〈F, Σ〉 by Attacking F

Lemma 28. Let S = 〈F,Σ〉 be a probabilistic hash-and-sign signature scheme as per Definition 21. Then for any
integers n1, n2 > 0,

A-COLn1,n2 [F]⇒ 1-EFn1-CMA [S] , 1-EFn2-CMA [S] (9)
U-COLn1,n2 [F]⇒ ERn1,n2 [S] (10)

A-SECn2
n1

[F]⇒ 1-UFn1-CMA [S] (11)
U-SECn2

n1
[F]⇒ 1-EFn2-KMAn1 [S] (12)

U-SECn2
n1

[F]⇒ URn2
n1

[S] (13)

Proof (A-COLn1,n2 [F]⇒ 1-EFn1-CMA [S]). Given a (τF , εF)-solver AF for A-COLn1,n2 [F] we build an EFn1-CMA
attacker AS breaking S with probability εS = εF and τS = τF +Time (S.Sign, n2) in exactly one call to the signing
oracle. Given a random public key pk← S.Gen(), our attacker AS runs AF to produce an (n1, n2)-absolute-collision
(M1,M2), namely a pair (M1,M2) ∈ {0, 1}n1 × {0, 1}n2 such that M1 6= M2 and F (M1, r) = F (M2, r) for any
r ∈ {0, 1}r. Then AS requests a signature σ = Σ2(sk, F (M2, r), r, aux) on M2 (where (r, aux) = Σ1(sk, u) for some
u ∈ {0, 1}u) and produces σ as a valid signature on M1 6= M2. The same works with 1-EFn2-CMA as well by
symmetry. ut

Proof (U-COLn1,n2 [F] ⇒ ERn1,n2 [S]). Given a (τF , εF)-existential-collision-finder AF we build a repudiator AS
breaking ERn1,n2 [S] with probability εS = εF and time τS = τF + Time (S.Sign, n1). Given a random key pair
(pk, sk) ← S.Gen(), AS randomly picks u ← {0, 1}u and computes (r, aux) = Σ1(sk, u). Since u is taken uni-
formly at random, r is uniformly distributed over {0, 1}r. Now AS runs AF (r) to build an (n1, n2)-collision for r,
i.e. (M1,M2) ∈ {0, 1}n1 × {0, 1}n2 such that F (M2, r) = F (M1, r). Then AS finishes to sign M1 by computing
σ = Σ2(sk, F (M1, r), r, aux) and outputs the tuple (M1,M2, σ). ut

Proof (A-SECn2
n1

[F] ⇒ 1-UFn1-CMA [S]). Assume that AF (τF , εF)-solves A-SECn2
n1

[F]. We build a UFn1-CMA
attacker AS which (τS , εS)-breaks S in one call to the signing oracle with εS = εH and τS = τH +Time (S.Sign, n2).
Given a public key pk ← S.Gen() and M1 ← {0, 1}n1 , AS must produce a valid signature on M1. AS runs
AF (M1) to build an (n1, n2)-absolute-collision (M1,M2). AS then requests a signature on M2 and is given σ =
Σ2(sk, F (M2, r), r, aux) where (r, aux) = Σ1(sk, u) for some u ∈ {0, 1}u. AS then returns (M1, σ). ut

Proof (U-SECn2
n1

[F]⇒ 1-EFn2-KMAn1 [S]). Assuming AF (τF , εF)-solves SECn2
n1

[F], we build an attacker AS which
(τS , εS)-solves 1-EFn2-KMAn1 [S] with εS = εF and τS = τF . AS is given a random pk ← S.Gen() and a single
random message-signature pair (M1, σ) where M1 ← {0, 1}n1 and σ = Σ2(sk, F (M1, r), r, aux) with (r, aux) =
Σ1(sk, u) for u← {0, 1}u. Since u is uniform, note that r is uniform too. AS runs AF (M1, r) to construct an n2-bit
string M2 6= M1 with F (M2, r) = F (M1, r). AS then returns the existential forgery (M2, σ). ut

Proof (U-SECn2
n1

[F] ⇒ URn2
n1

[S]). Assuming AF (τF , εF)-solves U-SECn2
n1

[F], we build a (τS , εS)-repudiator AS
which on input a random key pair (pk, sk) ← S.Gen() and a random message M1 ∈ {0, 1}n1 , returns a message
M2 6= M1, |M2| = n2 and σ such that σ is a valid signature on both M1 and M2. Here again, εS = εF and
τS = τF + Time (S.Sign, n2). AS randomly picks u ← {0, 1}u and computes (r, aux) = Σ1(sk, u). Since u is taken
uniformly at random, r is uniformly distributed over {0, 1}r. Then AS runs AF (M1, r) to produce a string M2 ∈
{0, 1}n2 , M2 6= M1, such that F (M2, r) = F (M1, r). AS then computes σ = Σ2(sk, F (M1, r), r, aux) and outputs
(M2, σ). ut

Lemma 29 (The case of primitive signatures). Let S = 〈F,Σ〉 be a probabilistic hash-and-sign signature
scheme and assume that S is primitive. Then

∀n > 0, U-PREn [F]⇒ EFn-KOA [S]

12

Proof (U-PREn [F]⇒ EFn-KOA [S]). Assuming black-box access to AF which (τF , εF)-breaks U-PREn [F], we build
an EFn-KOA adversary AS which (τS , εS)-breaks S where εS = εF and τS = τF +Time (S.Prim)+Time (S.Ver). AS
is given a random key pk← S.Gen(). Since S is primitive, AS can generate a random pair (m,σ = S.Sign(sk,m, u))
by running S.Prim(pk). Note that m is uniformly distributed over {0, 1}m and u is uniform over {0, 1}u, thereby
making r = Υ1(pk, σ) uniform over {0, 1}r. Now AS runs AF (m, r) to construct M ∈ {0, 1}n such that F (M, r) = m.
AS then outputs (M,σ). ut

6.2 Proving S = 〈F, Σ〉 Secure Assuming F Secure

We are now looking for positive security relations between S and F . As in the deterministic case, it seems unlikely
(although we do not disprove it) that security proof exist wich relate the unforgeability of S to F . Assuming S
injective, however, is enough to show that non-repudiation can be guaranteed under security assumptions on F .

Lemma 30 (The case of injective signatures). Let S be a probabilistic hash-and-sign signature scheme and
assume S is injective. Then for any n1, n2 > 0,

E-COLn1,n2 [F]⇐ ERn1,n2 [S] (14)
E-SECn2

n1
[F]⇐ URn2

n1
[S] . (15)

Proof (E-COLn1,n2 [F] ⇐ ERn1,n2 [S]). Let us assume an adversary AS which (τS , εS)-breaks ERn1,n2 [S]. We
build an existential collision-finder AF which (τF , εF)-breaks E-COLn1,n2 [F] with εF = εS and τF = τS +
Time (S.Gen) + +Time (S.Ver). AF generates a random key pair (pk, sk) ← S.Gen() and runs AS(pk, sk). If AS
outputs (M1,M2, σ) where M1 ∈ {0, 1}n1 , M2 ∈ {0, 1}n2 , M2 6= M1 and σ is a valid signature on M1 and M2,
then AF computes r = Υ1(pk, σ) and outputs (M1,M2, r). If σ is a signature on M1 and M2 simultaneously then
σ = Σ2(sk, F (M1, r1), r1, aux1) = Σ2(sk, F (M2, r2), r2, aux2) for some aux1, aux2 and r1, r2 ∈ {0, 1}r. Since S is
injective, one must have r1 = r2 = r and F (M1, r) = F (M2, r) so that (M1,M2, r) is an (n1, n2)-existential colli-
sion. ut

Proof (E-SECn2
n1

[F] ⇐ URn2
n1

[S]). Assuming a (τS , εS)-universal repudiator AS , we build an algorithm AF which
(τF , εF)-breaks E-SECn2

n1
[F] with εF = εS and τF = τS + Time (S.Gen) + Time (S.Ver). Given a random M1 ←

{0, 1}n1 , AF generates a random key pair (pk, sk) ← S.Gen() and runs AS(pk, sk,M1) to construct a pair (M2, σ)
where M2 ∈ {0, 1}n2 , M2 6= M1 and σ is a valid signature on M1 and M2. In this case, AF computes r =
Υ1(pk, σ) and outputs (M2, r). σ being a signature on both M1 and M2 implies σ = Σ2(sk, F (M1, r1), r1, aux1) =
Σ2(sk, F (M2, r2), r2, aux2) for some aux1, aux2 and r1, r2 ∈ {0, 1}r. Since S is injective, one must have r1 = r2 = r
and F (M1, r) = F (M2, r) so that (M2, r) yields an n2-bit second preimage of F (M1, r). ut

Discussion. As opposed to deterministic hash-an-sign signatures, the probabilistic hash-and-sign paradigm inher-
ently offers better security guarantees. For instance, breaking S in the EF-CMA sense is easy if H is not collision-
resistant in the deterministic case S = 〈H,Σ〉. Breaking the same security level for S = 〈F,Σ〉, however, seems
to require the generation of absolute collisions for F , a much stronger result. Overall, given a fixed-size signature
scheme Σ, it seems largely preferable to domain-extend it in the probabilistic way for which security is obtained
under much weaker assumptions on the security of the inner hash component.

7 Merkle-Damg̊ard-based Instantiations of F

In previous sections, we introduced and made use of new security notions for a hash function family F : {0, 1}∗ ×
{0, 1}r → {0, 1}m. To exemplify our investigation on the impacts of F on a signature scheme S = 〈F,Σ〉, we analyze
three practical instantiations of F using a Merkle-Damg̊ard (MD for short) hash function. This is motivated by the
fact that SHA-1, MD5 and most of other hash functions we use in practice are obtained by applying some variant
of the Merkle-Damg̊ard construction to an underlying compression function f : {0, 1}m × {0, 1}b → {0, 1}m. First,
we relate attackers against F and attackers against the Merkle-Damg̊ard hash function. This allows to reformulate
the security results of the previous sections which involve F into more specific security statements involving the
MD hash function directly. Based on these reductions, we display the effective workload of the best known attacks
against F in every instantiation.

13

7.1 Instantiating F with any hash function H

Let H be a hash function. There are many ways one may attempt to construct a hash function family F using H.
We consider later on the two most “natural” constructions, namely F (M, r) = H(M ||r) and F (M, r) = H(r||M).
For these two operating modes (we actually consider a wider class F (M, r) = H([[M, r]]) of operating modes), we
relate the security of F – as defined in Section 3.2, to the one of H – as defined in Section 3.1. Combining these
new security relations with the results of Section 6, it is easy to reformulate attacks or security assumptions on
hash-and-sign signatures in terms of attacks or security assumptions on H.

Lemma 31. Let H : {0, 1}∗ → {0, 1}m be a hash function and let [[M, r]] denote an (|M | + r)-bit (one-to-one)
encoding of the pair (M, r) ∈ {0, 1}∗ × {0, 1}r. Let now F be the hash function family defined on M ∈ {0, 1}∗ and
r ∈ {0, 1}r (r being arbitrary) as F (M, r) = H([[M, r]]). Then for any n1, n2 > 0,

PREn2+r [H] ⇔ E-PREn2 [F] ⇐ U-PREn2 [F]

⇓

SECn2+r
n1+r [H] ⇐ U-SECn2

n1
[F] ⇐ A-SECn2

n1
[F]

⇓ ⇓

COLn1+r,n2+r [H] ⇐ E-COLn1,n2 [F] ⇐ U-COLn1,n2 [F] ⇐ A-COLn1,n2 [F]

where non-underlined relations are already known by Theorem 17.

Proof (COLn1+r,n2+r [H]⇐ E-COLn1,n2 [F]). Given an adversary AF which (τF , εF)-breaks E-COLn1,n2 [F], we con-
struct a reductionAH which (τH , εH)-breaks COLn1+r,n2+r [H] with τH = τF and εH = εF +Time (encode [[·, ·]] , n1, r)
+ Time (encode [[·, ·]] , n2, r). AH runs AF to construct a tuple (M1,M2, r) such that F (M1, r) = F (M2, r), that is,
H([[M1, r]]) = H([[M2, r]]). AH then outputs the (n1 + r, n2 + r)-collision ([[M1, r]] , [[M2, r]]) on H.

Proof (SECn2+r
n1+r [H]⇐ U-SECn2

n1
[F]). Given an adversary AF (τF , εF)-breaking U-SECn2

n1
[F], one builds a reduction

AH which (τH , εH)-breaks SECn2+r
n1+r [H] with τH = τF + Time (parse [[·, ·]] , n1, r) + Time (encode [[·, ·]] , n2, r) and

εH = εF . Given a random M̄1 ← {0, 1}n1+r, AH parses M̄1 as M̄1 = [[M1, r]] where |M1| = n1 and |r| = r. Then
AH runs AF (M1, r) to obtain an n2-bit string M2 such that F (M2, r) = F (M1, r) i.e. H(M̄2) = H(M̄1). AH then
outputs M̄2 = [[M2, r]]. ut

Proof (PREn2+r [H]⇐ E-PREn2 [F]). Given an adversary AF (τF , εF)-breaking E-PREn2 [F], one builds a reduction
AH which (τH , εH)-breaks PREn2+r [H] with εH = εF and τH = τF + Time (encode [[·, ·]] , n2, r). Given a random
m ← {0, 1}m, AH runs AF (m) to construct a pair (M, r) ∈ {0, 1}n2 × {0, 1}r such that F (M, r) = m. Then AH

outputs M̄ = [[M, r]]. Obviously H(M̄) = m. ut

Proof (PREn2+r [H]⇒ E-PREn2 [F]). Given an adversaryAH (τH , εH)-breaking PREn2+r [H], one builds a reduction
AF which (τF , εF)-breaks E-PREn2 [F] with εF = εH and τF = τH + Time (parse [[·, ·]] , n2, r). Given a random
m← {0, 1}m, AF runs AH(m) to construct an (n2 + r)-bit string M̄ such that H(M̄) = m. Then AF parses M̄ as
M̄ = [[M, r]] where |M | = n2 and |r| = r and outputs (M, r). Obviously F (M, r) = m. ut

7.2 Merkle-Damg̊ard hash functions

Let f : {0, 1}m × {0, 1}b → {0, 1}m be a compression function, g : {0, 1}∗ → ({0, 1}b)∗ an arbitrary function (called
message padding or padding) and IV0 ∈ {0, 1}m. We recall that a hash function H can be obtained from these
components by using iterated hashing as described in Definition 3. We write H = ITER [f, g, IV0].

Definition 32 (Collision-propagating paddings). Let k1, k2 > 0. A padding function g : {0, 1}∗ → ({0, 1}b)∗
is said to be (k1, k2)-collision-propagating when for any compression function f : {0, 1}m × {0, 1}b → {0, 1}m and
any IV0 ∈ {0, 1}m, the hash function H = ITER [f, g, IV0] is such that for any k1-block string M1 ∈ {0, 1}k1·b and
k2-block string M2 ∈ {0, 1}k2·b, if H(M1) = H(M2) then H(M1 ‖M) = H(M2 ‖M) for any M ∈ {0, 1}∗.

14

The basic and strengthened Merkle-Damg̊ard constructions are a specific case of iterated hashing using specific
functions g = g0 or g = gs defined as follows. For any M ∈ {0, 1}∗, g0(M) is obtained by appending to M as many
0-bits as necessary to yield a d|M |/be-block string. Let a ≤ b be a size parameter. Given M ∈ {0, 1}∗, gs(M) is
formed by appending a single 1-bit to M and as many 0-bits as required so that the length of the so-obtained string
is congruent to b− a modulo b. Then the bitlength of M , seen as an a-bit string, is appended:

g0(M) = M ‖ 0t with t = −|M | mod b ,
gs(M) = M ‖ 1 ‖ 0t ‖ [|M |]a with t = −(|M |+ a + 1) mod b .

Appending a logical length-block prior to hashing is called MD-strengthening [7, 8, 17]. This technique aims at
preventing collision and pseudo-collision attacks which find colliding messages of different length, including trivial
collisions for random IV’s, long message attacks and fixed point attacks [22, 26]. The protection it seems to offer
justifies the practical use of MD-strengthening in common hash functions.

Let us now fix f : {0, 1}m × {0, 1}b → {0, 1}m and IV0 ∈ {0, 1}m. The related Merkle-Damg̊ard hash function
without MD-strengthening is the hash function H0 = ITER [f, g0, IV0]. Its counterpart with MD-strengthening is
the hash function Hs = ITER [f, gs, IV0]. We may sometimes use Hx,IV = ITER [f, gx, IV] for x = 0 or s.

Proposition 33. a) g0 is a (k1, k2)-collision-propagating padding for any k1, k2 > 0. b) gs is a (k, k)-collision-
propagating padding for any k > 0.

Hence, it is rather obvious that MD-strengthening is not enough to thwart attacks based on propagating collisions
in a way or another. In fact, all known second preimage or collision-finding attacks against Merkle-Damg̊ard hash
functions with MD-strengthening generate messages with the same block length so that the padding gs, which only
depends on the length of the input message, is the same for generated messages and therefore does not interfere with
the attack. In fact, it is easily seen that for any n = k · b > 0, PREn [H0]⇐ PREn [Hs], SECn

n [Hs]⇐ SECn
n [H0] and

COLn,n [Hs]⇐ COLn,n [H0]. We therefore restrict ourselves to instantiations of F based on Hs = ITER [f, gs, IV0],
knowing in advance that all recent SEC and COL attacks against H0, which retrieve same-length colliding messages,
equally apply to the real-life setting Hs = ITER [f, gs, IV0].

7.3 MD-based hash function families

Lemma 34. Let Hs = ITER [f, gs, IV0] be an MD hash function with MD strengthening and F defined on {0, 1}∗×
{0, 1}r as F (M, r) = Hs(M‖r). Then for any n = k · b > 0,

A-SECn
n [F] ⇐ SECn

n [Hs] ⇐ SECn
n [H0]

⇓ ⇓ ⇓

A-COLn,n [F] ⇐ COLn,n [Hs] ⇐ COLn,n [H0]

Proof (A-COLn1,n2 [F] ⇐ COLn1,n2 [Hs] for any n1, n2 > 0). Given an adversary AHs
which (τHs

, εHs
)-breaks

COLn1,n2 [Hs], one builds a reduction AF which (τF , εF)-breaks A-COLn1,n2 [F] with εF = εHs
and τF = τHs

. AF

runs AHs
to build an (n1, n2)-collision (M1,M2) on H and outputs it. Since g is collision-propagating, one has

H(M1‖r) = H(M2‖r) for any r ∈ {0, 1}r ⊆ {0, 1}∗, meaning that (M1,M2) is an (n1, n2)-absolute collision on
F . ut
Proof (A-SECn2

n1
[F] ⇐ SECn2

n1
[Hs] for any n1, n2 > 0). Given an adversary AHs

(τHs
, εHs

)-breaking SECn2
n1

[Hs],
one builds a reduction AF which (τF , εF)-breaks A-SECn2

n1
[F] with εF = εHs

and τF = τHs
. Given a random

M1 ← {0, 1}n1 , AF runs AHs
(M1) to build an (n1, n2)-collision (M1,M2) on H and outputs M2. Since g is

collision-propagating, one has H(M1‖r) = H(M2‖r) for any r ∈ {0, 1}r ⊆ {0, 1}∗, meaning that (M1,M2) is an
(n1, n2)-absolute collision on F . ut
Lemma 35. For Hs = ITER [f, gs, IV0] as above, let now consider F defined as F (M, r) = Hs(r‖M). Then for
any n = k · b > 0, A-SECn

n [F] and A-COLn,n [F] are perfectly secure unless f and IV0 are voluntarily constructed
otherwise.

This is even true when F (M, r) = H0(r‖M). To see this, assume for instance that r is a multiple of the block
size b and pose S = {IV | IV = H0(r), r ∈ {0, 1}r}. Denote H0,IV = ITER [f, g0, IV]. Then finding an (n, n) or
(n1, n2)-absolute collision for F implies the existence of M1,M2 such that ∀IV ∈ S, H0,IV (M1) = H0,IV (M2). As
the set S has to be large (otherwise finding collisions on H0 = H0,IV0 is easy), this property is statistically unlikely
for a practical hash function.

15

7.4 Comparing operating modes F (M, r) = Hs(M‖r) and F (M, r) = Hs(r‖M)

It is easily seen that a probabilistic signature scheme S = 〈F,Σ〉 based on the operating mode F (M, r) = Hs(M‖r)
yields in reality deterministic hash-and-sign signatures on message subspaces M ∈ {0, 1}k·b. Indeed posing Hs,IV =
ITER [f, gs, IV], it is obvious that if |M | = k · b then Hs(M‖r) = Hs,m(r) where m = H0,IV0(M). So on these
subspaces, σ = S.Sign(sk,M, u) = Σ2(sk, F (M, r), r, aux) where (r, aux) = Σ1(sk, u) can be reformulated as σ =
Σ2(sk,Hs,m(r), r, aux) = Σ′

2(sk,m, u) where m = H0(M). This drives us to the following observation.

Lemma 36. Let S = 〈F,Σ〉. If F (M, r) = Hs(M‖r) then S = 〈H0, Σ
′〉 on message subspaces {0, 1}k·b for k > 0

for some signature scheme Σ′.

So in this case S can be viewed as a deterministic signature scheme. The security benefits inherent to using the
probabilistic hash-and-sign paradigm are then completely lost:

Corollary 37 (Operating mode F (M, r) = Hs(M‖r)). For any n = k · b > 0, all security levels EFn-CMA [S],
UFn-CMA [S], EFn-KMA [S], ERn [S] and URn [S] fall as soon as COLn,n [H0] or SECn

n [H0] are broken (Lemma 24).
In the primitive signature case, even EFn-KOA [S] is easy to break if one finds an efficient preimage attack against
PREn [H0].

By opposition, the operating mode F (M, r) = Hs(r‖M) provides (unless the compression function f is “unnat-
ural”) perfect security for A-COLn,n [F] and A-SECn

n [F], thus leaving no visible breach in the security of S:

Corollary 38 (Operating mode F (M, r) = Hs(r‖M)). Combining the security reductions of Lemmas 35 and
31 and all security statements of Section 6, there is no known way to break S in any sense even if COLn,n, SECn

n

and PREn are totally broken for H0.

Clearly, this strongly suggests to prefer the second operating mode over the first one in practical signature
implementations.

7.5 Concrete security figures for three instantiations of F (M, r)

We display concrete security workloads for effectively attacking F (m, r) under current knowledge for the three
instantiations F (m, r) = Hs(M ||r), F (m, r) = Hs(r||M) and F (m, r) = Hs,r(M) and Hs =MD4, MD5, SHA-0 and
SHA-1. What we plot is the expected running time τHs

of the attack algorithm when imposing a success probability
εHs

heuristically close to one.

Hs(M ||r) Hs(r||M) Hs,r(M)
MD4 MD5 SHA-0 SHA-1 MD4 MD5 SHA-0 SHA-1 MD4 MD5 SHA-0 SHA-1

U-PRE [F]
E-PRE [F]
A-SEC [F] ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
U-SEC [F]
E-SEC [F] ? 252 258 258

A-COL [F] 21 230 239 263 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
U-COL [F] 21 230 239 263 21 230 239 263 21 230 239 263

E-COL [F] 21 230 239 263 21 230 239 263 21 230 239 263

Fig. 3. Security of F for common hash functions Hs and operating modes

Breaking E-COL [F] is just finding collisions for the Merkle-Damg̊ard hash function H0 in the three cases since
the value of r is unconstrained. The best attacks known are Sasaki’s new message difference for MD4 [35], Klima’s
tunnels for MD5 [23], Wang’s attack on SHA-0 [40], and the latest improvements over Wang’s SHA-1 attack [39].
When the input r is treated after all message blocks, these are also A-COL attacks as previously discussed. Conversely
if r is processed in the beginning of the hash function, we assume that absolute collisions do not exist. Concerning
preimages, there are some results that can be used. Against MD4, Yu et al. gave a differential path that allow to
find preimages for a class of weak messages; in some cases r can be used to randomize the IV or the message until
we have a weak message:

16

– with F (M, r) = H0,r(M), we just try as many IV’s as needed;
– with F (M, r) = H0,IV0(r||M) we can randomize the message if 58 < |r| ≤ 128 (if r is too short we will not find

a weak one, and if it is too long the two messages will be the same).

The target collision attack against MD5 by Stevens, Lenstra and de Weger [37] can be used to generate solutions
for E-SEC [F] if r is long enough (at least 4192 bits). A similar attack can certainly be done on MD4. ∞ indicates
perfect security. Empty cells denote that we are not aware of an attack more efficient than generic attacks.

8 Conclusion

In this paper, we have investigated the impact of recent attacks on hash functions on signature schemes using them.
We have suggested categories of signature schemes to tell them apart in terms of deterministic or probabilistic hash-
and-sign mechanism, injectivity and primitiveness. For each of these categories (and notably for signature schemes
such as FDH, PSS and Schnorr), we have shown how their security relates to the one of their inner hash component.

We also focused on the case of hash functions based on the Merkle-Damg̊ard paradigm (which is the case of
MDx and SHAx functions) by enlightening the security properties of popular operating modes, the ones one would
try first to construct a hash function family. We have identified F (M, r) = Hs(M‖r) as the less secure one by far. A
concrete conclusion of our work is the suggestion of using F (M, r) = Hs(r‖M) or more intricate operating modes.
No security breach on probabilistic hash-and-sign signatures using F is known in this case, even if H0 is totally
broken.

We leave as an open problem to study the impact of hash functions on encryption schemes.

References

1. M. Bellare and Ph. Rogaway. Random oracles are practical: a paradigm for designing efficient protocols. In Proc. of
ACM CCS ’93, pages 62–73. ACM Press, November 1993.

2. M. Bellare and Ph. Rogaway. The exact security of digital signatures - how to sign with RSA and Rabin. In U. M.
Maurer, editor, Proc. of Eurocrypt ’96, volume 1070 of LNCS, pages 399–416. Springer-Verlag, Berlin, May 1996.

3. M. Bellare and Ph. Rogaway. PSS: Provably secure encoding method for digital signatures. Submission to IEEE P1363a,
August 1998. http://grouper.ieee.org/groups/1363/.

4. E. Biham and R. Chen. Near collision for SHA-0. In M. Franklin, editor, Proc. of Crypto ’04, volume 3152 of LNCS,
pages 290–305. Springer-Verlag, Berlin, August 2004.

5. J. Black, Ph. Rogaway, and T. Shrimpton. Black-box analysis of the block-cipher-based hash-function constructions
from PGV. In M. Yung, editor, Proc. of Crypto ’02, volume 2442 of LNCS, pages 320–335. Springer-Verlag, Berlin,
August 2002.

6. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. In C. Boyd, editor, Proc. of Asiacrypt
’01, volume 2248 of LNCS, pages 514–532. Springer-Verlag, Berlin, December 2001.

7. B. den Boer and A. Bosselaers. An attacks on the last two rounds of MD4. In J. Feigenbaum, editor, Proc. of Crypto
’91, volume 576 of LNCS. Springer-Verlag, Berlin, August 1991.

8. B. den Boer and A. Bosselaers. Collisions for the compression function of MD5. In T. Helleseth, editor, Proc. of Eurocrypt
’93, volume 765 of LNCS, pages 293–304. Springer-Verlag, Berlin, May 1993.

9. D. R. L. Brown. Generic groups, collision resistance, and ECDSA. http://eprint.iacr.org/2002/026/, February 2002.
10. F. Chabaud and A. Joux. Attack on sha-0. email, August 1998.
11. J.-S. Coron. On the exact security of full-domain-hash. In M. Bellare, editor, Proc. of Crypto ’00, volume 1880 of LNCS,

pages 229–235. Springer-Verlag, Berlin, August 2000.
12. J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In L. R. Knudsen, editor, Proc. of Eurocrypt

’02, volume 2332 of LNCS, pages 272–287. Springer-Verlag, Berlin, April–May 2002.
13. J.-S. Coron and D. Naccache. Security analysis of the Gennaro-Halevi-Rabin signature scheme. In B. Preneel, editor,

Proc. of Eurocrypt ’00, volume 1807 of LNCS, pages 91–101. Springer-Verlag, Berlin, May 2000.
14. C. de Cannière and C. Rechberger. SHA-1 collisions: Partial meaningful at no extra cost? Rump Session of Crypto ’06,

August 2006.
15. C. de Cannière and C. Rechberger. Finding SHA-1 Characteristics: General Results and Applications. In Proc. of

Asiacrypt ’06, volume 4284 of LNCS, pages 1–20. Springer-Verlag, Berlin, December, 2006.
16. C. De Canniere, F. Mendel and C. Rechberger . A Collision for 70-step SHA-1 in a Minute. Rump Session of FSE ’07.
17. H. Dobbertin. The status of MD5 after a recent attack. CryptoBytes (RSA Laboratories), 2(2):1–6, Summer 1996.
18. A. Fiat and A. Shamir. How to prove yourself : Practical solutions to identification and signature problems. In A. M.

Odlyzko, editor, Proc. of Crypto ’86, volume 263 of LNCS, pages 186–194. Springer-Verlag, Berlin, August 1986.

17

http://grouper.ieee.org/groups/1363/
http://eprint.iacr.org/2002/026/

19. R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signature without the random oracle. In J. Stern, editor,
Proc. of Eurocrypt ’99, volume 1592 of LNCS, pages 123–139. Springer-Verlag, Berlin, May 1999.

20. American National Standards Institute. Public key cryptography for the financial services industry: The elliptic curve
digital signature algorithm. ANSI X9.62-1998, January 1999.

21. P. Gauravaram, A. McCullagh and E. Dawson. Collision Attacks on MD5 and SHA-1: Is this Sword of Damocles for
E-commerce? In Proc. of AusCERT ’06, pages 73–88, May 2006.

22. J. Kelsey and B. Schneier. Second preimages on n-bit hash functions for much less than 2n work. In R. Cramer, editor,
Proc.of Eurocrypt ’05, volume 3494 of LNCS, pages 474–490. Springer-Verlag, Berlin, May 2005.

23. V. Kl̀ıma. Tunnels in hash functions: MD5 collisions within a minute. http://eprint.iacr.org/2006/105/, April 2006.
24. H. Krawczyk and T. Rabin. Chameleon signatures. In Proc. of NDSS 2000, pages 143–154. Internet Society, February

2000.
25. G. Leurent. Message Freedom in MD4 and MD5 Collisions: Application to APOP. In A. Biryukov, editor, Proc. of FSE

’07, LNCS. Springer-Verlag, Berlin, March 2007.
26. S. Lucks. A failure-friendly design principle for hash functions. In B. Roy, editor, Proc. of Asiacrypt ’05, volume 3788

of LNCS, pages 474–494. Springer-Verlag, Berlin, December 2005.
27. J. Stern, D. Pointcheval, J. Malone-Lee and N. Smart. Flaws in Applying Proof Methodologies to Signature Schemes.

In M. Yung, editor, Proc.of Crypto ’02, volume 2442 of LNCS, pages 93–110. Springer-Verlag, Berlin, August 2002.
28. K. Matusiewicz, T. Peyrin, O. Billet, S. Contini and J.Pieprzyk. Cryptanalysis of FORK-256. In A. Biryukov, editor,

Proc. of FSE ’07, LNCS. Springer-Verlag, Berlin, March 2007.
29. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, Boca Raton,

Florida, October 1997. http://cacr.math.uwaterloo.ca/hac/.
30. D. Naccache, D. Pointcheval, and J. Stern. Twin signatures: an alternative to the hash-and-sign paradigm. In P. Samarati,

editor, Proc. of ACM CCS ’01, pages 20–27. ACM Press, November 2001.
31. National Institute of Standards and Technology. Digital Signature Standard (DSS). Federal Information Processing

Standards — Publication 186, May 1994.
32. B. Preneel. Analysis and design of cryptographic hash functions. PhD thesis, 1993.
33. Ph. Rogaway. Formalizing human ignorance. In P. Q. Nguyen, editor, Proc. of Vietcrypt ’06, volume 4341 of LNCS,

pages 211–218. Springer-Verlag, Berlin, 2006.
34. Ph. Rogaway and T. Shrimpton. Cryptographic hash-function basics: Definitions, implications, and separations for

preimage resistance, second-preimage resistance, and collision resistance. In B. K. Roy and W. Meier, editors, Proc. of
FSE ’04, volume 3017 of LNCS, pages 371–388. Springer-Verlag, Berlin, February 2004.

35. Y. Sasaki, L. Wang, Y. Ohta, and N. Kunihiro. New message difference for MD4. In A. Biryukov, editor, Proc. of FSE
’07, LNCS. Springer-Verlag, Berlin, March 2007.

36. C. P. Schnorr. Efficient signatures generation by smart cards. J. of Cryptology, 4(3):161–174, 1991.
37. M. Stevens, A. K. Lenstra, and B. de Weger. Chosen-prefix collisions for MD5 and colliding X.509 certificates for different

identities. In M. Naor, editor, Proc. of Eurocrypt ’07, LNCS. Springer-Verlag, Berlin, May 2007.
38. X. Y. Wang, D. Feng, X. J. Lai, and H. B. Yu. Collisions for hash functions MD4, MD5, HAVAL-128 and RIPEMD. Cryp-

tology ePrint Archive, http://eprint.iacr.org/2004/199, August 2004. Presented at the Rump Session of Crypto ’04.
39. X. Y. Wang, Y. L. Yin, and H. B. Yu. Finding collisions in the full sha-1. In V. Shoup, editor, Proc. of Crypto ’05,

volume 3621 of LNCS, pages 17–36. Springer-Verlag, Berlin, August 2005.
40. X. Y. Wang, H. B. Yu, and Y. L. Yin. Efficient collision search attacks on SHA-0. In V. Shoup, editor, Proc. of Crypto

’05, volume 3621 of LNCS, pages 1–16. Springer-Verlag, Berlin, August 2005.

A Short Definition of Some Classic Signature Schemes

Schnorr. This discrete log-based signature scheme was introduced in [36]. Let G be an abelian group of prime
order q and generator g.

Key generation uniformly select the secret key x← Zq and deduce public key y = gx.
Signature given M ∈ {0, 1}∗,

(Σ1) select k ← Zq, set r = gk and output (r, k)
(F) compute m = F (M, r)

(Σ2) given m and (r, k), compute s = k + mx mod q and return σ = (s, r).
Verification compute m = F (M, r) and check that gsy−m = r.

The signature scheme PrimSchnorr consists in simply defining the signature on m as σ = (s, r) where r = gk and
s = k + mx mod q for a randomly selected k ← Zq. PrimSchnorr is existentially (even universally) forgeable since
for any pair (m, s) ∈ Z2

q, σ = (s, r) where r = gsy−m is a valid signature on m. It is easily seen that Schnorr
signatures are also injective.

18

http://eprint.iacr.org/2006/105/
http://cacr.math.uwaterloo.ca/hac/
http://eprint.iacr.org/2004/199

Full Domain Hash (FDH). This signature scheme was proposed by Bellare and Rogaway in [2]. The scheme
relies on a hash function H : {0, 1}∗ → {0, 1}k and an RSA key generator Gen(1k) returning random k-bit RSA
keys.

Key generation randomly select (n, e, d)← Gen(1k) and deduce public key (n, e).
Signature given M ∈ {0, 1}∗,

(H) compute m = H(M)
(Σ) given m, compute s = md mod n and return σ = s.

Verification compute m = H(M) and check that se = m mod n.

FDH is obviously a deterministic hash-and-sign signature scheme. Since RSA is a trapdoor permutation, FDH is
also primitive and injective.

Probabilistic Full Domain Hash (PFDH). PFDH is a probabilistic extension of FDH suggested in [12]. We
make use of a family of hash functions F : {0, 1}∗ × {0, 1}r → {0, 1}k and an RSA key generator Gen(1k) returning
random k-bit RSA keys.

Key generation randomly select (n, e, d)← Gen(1k) and deduce public key (n, e).
Signature given M ∈ {0, 1}∗,

(Σ1) select r ← {0, 1}r and return (r, ∅)
(F) compute m = F (M, r)

(Σ2) given m and (r, ∅), compute s = md mod n and return σ = (s, r).
Verification compute m = F (M, r) and check that se = m mod n.

PFDH is easily seen to be a probabilistic hash-and-sign signature scheme. Given m ∈ {0, 1}k, PrimPFDH simply
consists in generating σ = (s, r) with s = md mod n and r ← {0, 1}r and is therefore existentially forgeable. It is
also the case that PFDH is injective.

(Simplified) PSS. PSS was originally conceived by Bellare and Rogaway and proposed to the IEEE P1363
working group [3]. We focus on a simplified version of PSS here. Let Gen be an RSA key generator as above and
F : {0, 1}∗×{0, 1}r → {0, 1}m and G : {0, 1}m → {0, 1}r be two functions such that m + r + t = k where t is a small
constant.

Key generation randomly select (n, e, d)← Gen(1k) and deduce public key (n, e).
Signature given M ∈ {0, 1}∗,

(Σ1) select r ← {0, 1}r and return (r, ∅)
(F) compute m = F (M, r)

(Σ2) given m and (r, ∅), compute pad(m, r) = 0t‖m‖(r ⊕G(m)),
s = pad(m, r)d mod n and return σ = s.

Verification letting m̄ = se mod n, parse m̄ as 0t‖m‖(r ⊕G(m)) to recover (m, r).
If this fails return 0. Otherwise check that m = F (M, r).

Given m ∈ {0, 1}m, a signature on m with respect to PrimPSS is s = pad(m, r)d mod n for some randomly selected
r ← {0, 1}r. To build an existential forgery, randomly select s← Zn such that se mod n can be parsed as 0t‖m‖ρ.
This remains polynomial in k since t is a small constant. Now ρ = r ⊕ G(m) for some r ∈ {0, 1}r meaning that
s is a valid signature on m. It is straightforward that any value of s admits at most one pair (m, r) such that
s = pad(m, r)d mod n, so PSS is injective.

EMSA-PSS. PSS was originally conceived by Bellare and Rogaway and proposed to the IEEE P1363 working
group [3]. We focus on a simplified version of PSS here. Let Gen be an RSA key generator as above and F :
{0, 1}∗ × {0, 1}r → {0, 1}m and G : {0, 1}m → {0, 1}r be two functions such that m + r + t = k where t is a small
constant.

19

Key generation randomly select (n, e, d)← Gen(1k) and deduce public key (n, e).
Signature given M ∈ {0, 1}∗,

(Σ1) select r ← {0, 1}r and return (r, ∅)
(F) compute m = F (M, r)

(Σ2) given m and (r, ∅), compute pad(m, r) = 0t‖m‖(r ⊕G(m)),
s = pad(m, r)d mod n and return σ = s.

Verification letting m̄ = se mod n, parse m̄ as 0t‖m‖(r ⊕G(m)) to recover (m, r).
If this fails return 0. Otherwise check that m = F (M, r).

Given m ∈ {0, 1}m, a signature on m with respect to PrimPSS is s = pad(m, r)d mod n for some randomly selected
r ← {0, 1}r. To build an existential forgery, randomly select s← Zn such that se mod n can be parsed as 0t‖m‖ρ.
This remains polynomial in k since t is a small constant. Now ρ = r ⊕ G(m) for some r ∈ {0, 1}r meaning that
s is a valid signature on m. It is straightforward that any value of s admits at most one pair (m, r) such that
s = pad(m, r)d mod n, so PSS is injective.

Boneh-Lynn-Shacham (BLS). The concept of this scheme was instantiated in [6] using bilinear maps. Let G be
a pairing-friendly group of prime order q and generator g, and let 〈·, ·〉 : G2 → Gt denote a cryptographic bilinear
map over G. The scheme relies on a hash function H : {0, 1}∗ → {0, 1}m and a reversible function T : {0, 1}m → G
mapping m-bit strings to group elements.

Key generation uniformly select the secret key x← Zq and deduce public key y = gx.
Signature given M ∈ {0, 1}∗,

(H) compute m = H(M)
(Σ) given m, compute s = T (m)x and return σ = s.

Verification compute m = H(M) and check that 〈s, g〉 = 〈T (m), y〉.

A signature on m with respect to PrimBLS is s = T (m)x. Therefore one can raise y = gx to a random power r
until gr = T (m) can be reversed to yield m ∈ {0, 1}m. Then s = yr = T (m)x is a proper signature meaning that
PrimBLS is existentially forgeable. Since T is reversible, BLS signatures are injective.

Generic DSA. This case captures DSA [31], ECDSA [20] and numerous variants. Let G be a finite abelian group
of prime order q and generator g. Let H be a hash function and T : G → Zq be an arbitrary function.

Key generation uniformly select the secret key x← Zq and deduce public key y = gx.
Signature given M ∈ {0, 1}∗,

(H) compute m = H(M)
(Σ) given m, randomly select k ← Zq, set r = T (gk),

compute s = (m + rx)k−1 mod q and return σ = (r, s).
Verification compute m = H(M) and check that T (g

m
s y

r
s) = r.

Generic DSA signatures are deterministic hash-and-sign signatures. It is easily seen that they are also injective.
However, they do not seem to be primitive in general.

Gennaro-Halevi-Rabin (GHR). GHR was suggested in [19]. Its security is based on the strong RSA assumption
and the existence of division-intractable hash functions. We refer the reader to [19] for security proofs and definitions
in further detail. Following the ideas of [13], a simple way to realize this property consists in mapping bitstrings
to prime numbers in a collision-resistant fashion. Let H : {0, 1}∗ → {0, 1}m ∩ Primes be such a function where
m + t = k and t ≥ 2 is a small constant.

Key generation randomly select a k-bit safe RSA modulus n = (2p′ + 1)(2q′ + 1) as well
as u← Z∗n of maximal order 2p′q′. Deduce public key (n, u).

Signature given M ∈ {0, 1}∗,
(H) compute m = H(M)
(Σ) given m, compute s = um−1 mod 2p′q′ mod n and define the signature as σ = s.

Verification compute m = H(M) and check that sm = u mod n.

20

GHR is a deterministic hash-and-sign scheme and is also injective since for any given s ∈ Zn, there must exist at
most one m ∈ {0, 1}m∩ Primes such that sm = u mod n. Indeed, if sm1 = sm2 = u mod n with m1 < m2 then 2p′q′

must divide m2 −m1 < 2k−t. This implies 2p′q′ < 2k−t which contradicts t ≥ 2. However, GHR is not primitive.

Tight-GHR signature scheme. The security reduction of the above scheme to the flexible RSA problem is quite
bad [19, 11], and so the GHR signature scheme has next been modified by using a chameleon hash function [24],
thus obtaining a tight scheme.

More precisely, an attacker against the obtained Tight-GHR can be used to solved either the discrete logarithm
or the flexible RSA problems, with roughly the same success probability and running time. Let P and Q be large
prime numbers so that Q divides P − 1, and let 〈g〉 denote the cyclic subgroup generated by an element g ∈ Z∗p of
order Q. We then define H : 〈g〉 → {0, 1}`h .

Key generation randomly compute a safe RSA modulus n = (2p′ + 1)(2q′ + 1), a random element
u in Z∗n and a random element y in 〈g〉 ⊆ Z∗P . Publish (n, u, g, y, P).

Signature given M ← Zq,
select r ← Zq, compute m = H(gMyr mod P),
compute s = um−1 mod 2p′q′ and define the signature as σ = (r, s).

Verification compute m = H(gMyr mod P) and check that sm ≡ u mod n.

Twin-GHR signature scheme. The twinning paradigm was introduced by Naccache, Pointcheval and Stern
in [30]. It consists in signing two related messages with a potentially weaker signature scheme. It particulary fits to
GHR signatures. The security of the resulting signature scheme can be reduced to the flexible RSA problem. Let P
be an injective function that maps the set {0, 1}2`M into the prime numbers.

Key generation picks two safe RSA moduli n = (2p′ + 1)(2q′ + 1) and N = (2P ′ + 1)(2Q′ + 1),
select two random elements u1 ∈ Z∗n and u2 ∈ Z∗N . Publish (n, N, u1, u2).

Signature given M ∈ {0, 1}`M ,
select µ1 ← {0, 1}2`M at random, compute µ2 = (M‖M)⊕ µ1,
compute s1 = u1

P(µ1)
−1 mod 2p′q′ mod n, compute s2 = u2

P(µ2)
−1 mod 2P ′Q′

mod N ,
define σ = (µ1, s1, s2) as the signature on M .

Verification check that s
P(µ1)
1 = u1 mod n and s

P((M‖M)⊕µ1)
2 = u2 mod N .

Cramer-Shoup signature scheme. The Cramer-Shoup signature scheme (CS) is another hash-and-sign signature
scheme secure under the strong RSA assumption. One of the advantages of the Cramer-Shoup scheme, compared
to the GHR scheme, is that the hash function only needs to be collision-resistant. Its disadvantage is that the
reduction is loose. Let H : {0, 1}∗ → {0, 1}`h be a collision-resistant hash function.

Key generation randomly compute a safe RSA modulus n = (2p′ + 1)(2q′ + 1), e an (`h + 1)-bit prime
and x, h two random elements in QR(n). Publish (n, e, x, h).

Signature given M ∈ {0, 1}`M ,
(H) compute m = H(M)
(Σ) given m, choose c as a random (`h + 1)-bit prime, choose u at random in QR(n),

compute w = ueh−m mod n, compute v = (xhH(w))c−1 mod p′q′ mod n,
define σ = (c, u, v) as the signature on M .

Verification check that c is an odd (`h + 1)-bit integer and vc h−H(w′) ≡ x mod n
with w′ = ue h−H(m) mod n.

21

	Revisiting Security Relations Between Signature Schemes and their Inner Hash Functions
	Emmanuel Bresson and Benoît Chevallier-Mames and Christophe Clavier and Blandine Debraize and Pierre-Alain Fouque and Louis Goubin and Aline Gouget and Gaetan Leurent and Phong Nguyen and Pascal Paillier and Thomas Peyrin and Sébastien Zimmer

