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Abstract 
 
This paper describes a system aiming at enforcing semi-automatically counter-
mesures against fault injection attacks of smart cards. This system consists of a 
preprocessor which processes C source code in order to make it resistant against fault 
injection attacks. 
 
 

1. Introduction 
 
One of the motivations of this work is to be found in the well-known discovery of 
three researchers of Bell Core (Boneh, DeMillo and Lipton) in September 1996. They 
proposed a new attack model against smart cards, which they called "Cryptanalysis in 
the Presence of Hardware Faults" (cf [3] or [4]). This attack model initially focused on 
several public-key cryptographic algorithms: the RSA signature scheme and the Fiat-
Shamir and Schnorr authentication schemes. In [2], Biham and Shamir showed that 
DES is also potentially vulnerable to this kind of attack. 
 
In the present paper, instead of considering the special case of smart card 
implementations of cryptographic algorithms, we are more generally interested in the 
whole operating system of a smart card, and more precisely in its global correct 
behaviour. 
 
Fault injection attacks consist in perturbating the code execution within a smart card. 
This can be achieved by intentional modification of the physical environment of the 
card, for instance current glitches on the VCC, electromagnetic variations, Eddy 
current (see [4]), laser emission, ... This is a serious threat for smart card security and 
                                                      
1 This work was done when the first author was at Schlumberger Smart Cards. 
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can be used e.g. to bypass some crucial verification steps such as signature or PIN 
verification. 
 
We present here the principle of a semi-automatic tool that secures any piece of 
software implemented on a smart card, by checking that the code is correctly executed, 
either concerning the intermediate steps of the different functions (code execution, 
loops, tests, ...) or concerning the calls between one function to another. 
 
The protected code maintains dynamically a history of its execution; and at some 
points called control points, it checks the consistency of this history. The source code 
is tagged by special flags which indicate locations to be considered; the history is 
encoded by a stack which stores the list of flags which have been passed during the 
execution. Then, when a control point is reached, the consistency of the contents of the 
stack is checked according to some static information. If this checking fails, this means 
that the location which has been reached is not consistent regarding the history of the 
execution; this means that an error occured. 
 
The preprocessor computes the achitecture of this runtime protection and includes it 
into the source code to be protected. This processing follows a guideline made of a set 
of directives given by the developer. These directives are of the following kinds: 

• Starting points: such directives indicate the locations in the code where the 
protection must start. 

• Race conditions: such directives specifies some dynamic conditions to be 
fulfilled by the execution of the program. 

• Simple flags: such directives indicate the locations in the code to be considered 
by the history. 

• Control points: such directives indicate the locations in the code where history 
consistency checks must by processed. 

 
Let us note that race conditions goes beyond the scope of the protection. They actually 
allow the developer to specify a run-time checking of some execution properties. 
Precisely, such directives specify some families of executions, and a function defining, 
according to some dynamic conditions, the actual family to which the execution must 
belong. Each time a race condition is passed, a family of execution is chosen by this 
function. Then, the next control points perform their checking according to this choice. 
 
The preprocessor processes a C source code tagged by such directives. The main 
ingredient of this processing is the computation of the control flow graph (see [1]) of 
the program. That is the graph whose vertices are the C expressions which have to be 
evaluated during execution; and arrows encode the ordering of these evaluations. This 
graph is computed by a static analysis of the code. Consistent executions of the 
program are encoded by paths in this graph. The preprocessor computes these paths, 
and produces, for each control point, the list of consistent flag list. Each time the 
program passes a control point, it verifies that the stack encoding the execution history 
is consistent regarding this list; moreover, if some race condition have been set up, this 
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verification is done regarding which family of execution have been authorized. 
 
The solution proposed here thus provides a generic protection against fault injection 
attacks. Moreover, only a very limited additional work is required from the developer 
to prevent his code from such attacks. 
 
 

2. Basic Tools 
 

2.1 Flags and Flag Functions 

 
Definition: A flag is a piece of information that defines the characteristics of an 
execution point of the program. 
 
Definition: A flag function is a function that will be called by the program each time it 
passes the execution point corresponding to a flag, and will consist in storing in the 
shared memory some information about the flag. 
 
Examples 
A flag can be for example : 

• An integer that allows to know the localisation of the flag, or a boolean that 
defines e.g. whether it is the first of the last flag. 

• A more complex structure that describes a set of information concerning the 
current state of the electronic device that executes the code. For instance, a data 
structure that characterizes, depending on the value of a register, or a given 
variable, the set of flags we do NOT want to pass in the sequel of the program 
execution. 

 
A flag function can for instance execute the following operations : 

• Examine if the flag is the first flag (thanks to a specific data of the flag). 
o If yes, create an empty stack in the shared memory, put the flag 

identifier on the stack and continue the execution of the code. 
o If no, put the flag identifier on the stack and continue the execution of 

the code. 
 
 

2.2 Control Points, History Verification 

 
Definition: A control point is a data structure that contains the information that will be 
used in the history verification function. 
 
Definition: A history verification function is a function that will be called at each 
control point, in order to verify the consistence of the information that was stored in 
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the shared memory during the successive flag function calls. 
 
Examples 

• A control point can be defined as the set of all the lists of flags that correspond 
to admissible execution paths that reach this control point. 

• The verification function can consist in verifying that the contents of the stack 
(list of passed flags) corresponds to one of the precomputed lists stored in the 
control point. If this is not the case, an error is detected and signaled. 

 
 

3. Principle of the Preprocessor 
Here we describe the working of a preprocessor of C source code which enforce error 
detection in a semi-automatic way. 
 
The preprocessor transforms a C source code fragment in order to make it detect errors 
at runtime. 
 
The transformation is semi-automatic: it is driven by some special directives included 
in the source code fragment to be processed. This directives can take the following 
forms: 
 

• start: this directive specifies that the flag stack must be emptied. 
• flag: this directive specifies that a new flag must be pushed onto the stack. 
• verify: this directive specifies that a control point intended to verify the flag 

stack consistency, i.e., that the stack well records a history of flag which 
corresponds to a correct execution of the program. 

• race n cond: this directive specifies that if the boolean expression cond is true, 
then only the execution paths of the family n will be admitted by the control 
points occuring in the rest of the execution. Such a family is defined by the 
directives of the following sort: 

• flag !n1 ... !nk m1 ... mk: this directive specifies that the execution paths of 
families n1...nk must not go across this point, and that the execution paths of 
families m1...mk must go across this point. 

• Loop n: this directive specifies the start of a loop whose turn number is n. 
 
Here we give a source code fragment annotated by some directives as above. The 
function int f(int x, int d) does action1(d) three times, then action2(d) if x is equal to 1. 
The function action2(int d) does action21(d) and then action22(d). 
The directives are written under the form of #pragma C directives. Their effect are 
described in comments. 
 
int f (int x,int d) { 
   
  int i; 
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  /* starting point of the program part to be protected */ 
#pragma start 
 
  /* definition of the possible scenarios (optional) */  
#pragma race 0 x != 1 
#pragma race 1 x == 1 
 
  for(i=0; i<3; i++) { 
    /* tells cfprotect that this loop has 3 turns */     
#pragma loop 3 
#pragma flag 
    action1(d); 
  } 
 
  /* all the race must pass here, the flags are automatically numbered */ 
#pragma flag 
   
  if (x == 1) { 
    action2(d); 
  } 
     
  /* verification of the stack consistency, i.e. that the stack of flags 
     is consistent regarding the control flow of the program */ 
#pragma verify 
} 
 
void action2(int d) { 
  /* the race 1 must pass here and race 0 must not */ 
#pragma flag !0 1 
#pragma verify 
  action21(d); 
  action22(d); 
} 
 
The source code fragment we obtain after processing is the following: 
 
/********************************************************************/ 
#ifdef CONTROL_FLOW_PROTECTION 
#ifndef CONTROL_FLOW_PROTECTION_HEADER 
#define CONTROL_FLOW_PROTECTION_HEADER 
#include <string.h> 
char __control_flow_stack[8]; 
char __cf_stack_index=0; 
char __cf_race_flags=0; 
char __fcPath0[] = {2, 3, 3, 3, 4, 0}; 
char __fcPath1[] = {2, 3, 3, 3, 4, 1, 0}; 
#define __cfSET_RACE(x) __cf_race_flags |= x 
#define __cfRACE(x) __cf_race_flags & x 
#define __cfNORACE !(__cf_race_flags) 
#define __cfPUSH(x) __control_flow_stack[__cf_stack_index]=x, __cf_stack_index++ 
#define __cfRESET(x) __control_flow_stack[0]=x,__cf_stack_index=1,__cf_race_flags=0 
#define __cfVERIFY(p) strcmp(__control_flow_stack,p)==0 
#define __cfERROR printf("control flow error detected\n") 
#endif 
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#endif 
/********************************************************************/ 
 
int f (int x, int d) { 
   
  int i; 
 
  /* starting point of the program part to be protected */ 
#ifdef CONTROL_FLOW_PROTECTION 
__cfRESET(2); 
#endif 
 
  /* definition of the possible scenarios (optional) */  
#ifdef CONTROL_FLOW_PROTECTION 
if (x != 1) __cfSET_RACE(1); 
#endif 
#ifdef CONTROL_FLOW_PROTECTION 
if (x == 1) __cfSET_RACE(2); 
#endif 
 
  for(i=0; i<3; i++) { 
    /* tells cfprotect that this loop has 3 turns */     
#pragma loop 3 
#ifdef CONTROL_FLOW_PROTECTION 
__cfPUSH(3); 
#endif 
    action1(d); 
  } 
 
  /* all the race must pass here, the flags are automatically numbered */ 
#ifdef CONTROL_FLOW_PROTECTION 
__cfPUSH(4); 
#endif 
   
  if (x == 1) { 
    action2(d); 
  } 
     
  /* verification of the stack consistency, i.e. that the stack of flags 
     is consistent regarding the control flow of the program */ 
#ifdef CONTROL_FLOW_PROTECTION 
  __control_flow_stack[__cf_stack_index]=0; 
  if (!((__cfNORACE && (__cfVERIFY(__fcPath0) || __cfVERIFY(__fcPath1))) ||  
 ((!(__cfRACE(1)) || (__cfVERIFY(__fcPath0))) &&  
  (!(__cfRACE(2)) || (__cfVERIFY(__fcPath1)))))) 
    { __cfERROR; } 
#endif 
} 
 
void action2(int d) { 
  /* the race 1 must pass here and race 0 must not */ 
#ifdef CONTROL_FLOW_PROTECTION 
__cfPUSH(1); 
#endif 
#ifdef CONTROL_FLOW_PROTECTION 
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 __control_flow_stack[__cf_stack_index]=0; 
 if (!((__cfNORACE && (__cfVERIFY(__fcPath1))) || 
       ((!(__cfRACE(1)) &&  
 (!(__cfRACE(2)) || (__cfVERIFY(__fcPath1)))))))  
   { __cfERROR; } 
#endif 
  action21(d); 
  action22(d); 
} 
 
The precompiler computes and introduces the data structures needed for the 
verification. These data structures are divided into two sorts : static and dynamic. The 
dynamic data structures are: 

1. An array of byte intended to be use for the storage of the stack recording the 
flags successively passed during the execution; 

2. A byte recording the length of the stack; 
3. A byte recording the paths families which are active. 

 
char __control_flow_stack[8]; 
char __cf_stack_index=0; 
char __cf_race_flags=0; 
 
The static data record the admissible forms of the stack, in our case: 
 
char __fcPath0[] = {2, 3, 3, 3, 4, 0}; 
char __fcPath1[] = {2, 3, 3, 3, 4, 1, 0}; 
 
These data are computed by the preprocessor from the control flow graph of the 
program, also computed by the preprocessor (see Figure 1). The analysis of this graph 
shows which sequences of flags correspond to actual execution of the program from 
some starting directive to a control point. 
 
The precompiler also defines some procedures, actually C macros, which are used 
when a directive is crossed. 
These procedures are: 
 
#define __cfSET_RACE(x) __cf_race_flags |= x 
#define __cfRACE(x) __cf_race_flags & x 
#define __cfNORACE !(__cf_race_flags) 
#define __cfPUSH(x) __control_flow_stack[__cf_stack_index]=x, __cf_stack_index++ 
#define __cfRESET(x) __control_flow_stack[0]=x,__cf_stack_index=1,__cf_race_flags=0 
#define __cfVERIFY(p) strcmp(__control_flow_stack,p)==0 
#define __cfERROR printf("control flow error detected\n") 
 

1. __cfSET_RACE(x) is used to make active the path family x. 
2. __cfRACE(x) is a boolean which is true if and only if the family x is active. 
3. __cfNORACE is a boolean which is true if and only if no path family is active. 
4. __cfPUSH(x) push the flag x onto the stack. Let us note that the precompiler 

associate to each flag directive a unique token to be used in the stack. 
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5. __cfRESET(x) empties the stack. 
6. __cfVERIFY(p) compare the current stack with an array p  of flag representing 

a sequence of flag intended to be admissible. Such an array is a static data 
precomputed. 

7. __cfERROR is the procedure to be invoked in the case of error discovery. 
 
These functions are used to implement the error detection: 

• A start directive is replaced by an initialization flag encoded by __cfRESET(x) 
where x is the token associated to the flag in question. 

• A flag directive is replaced by a flag encoded by __cfPUSH(x) where x is the 
token associated to the flag in question. 

• A race n cond is replaced by 
if (cond) __cfSET_RACE(x) 
where x encodes the path family n. 

• A verify directive is replaced by a test, specific to the program point where the 
verify directive appears, which verifies that the current flag stack well 
corresponds to a correct execution, taking into account which path families 
have been activated. This verification relies on the static data precomputed by 
the precompiler. 

• loop n directives are used by the precompiler only, they are deleted after the 
processing. 

 
In the case of our example, the verification are done at the end of the function f and in 
the function action2. The array __fcPath0 and __fcPath1 define the execution paths 
which are admissible. There are two families, the first one is encoded by __fcPath0, 
the second one by __fcPath1. __fcPath0 corresponds to the execution which does not 
involve the call to action2(), __fcPath1 corresponds to the execution which involves 
action2() . 
 
If the verification fails at some control point, this means that the current flag stack is 
not consistent regarding the control flow graph of the program. This means that some 
error occured in the execution. 
 

 

4. Conclusion 
 
The solution proposed here thus provides a generic protection against fault injection 
attacks. Moreover, only a very limited additional work is required from the developer 
to prevent his code from such attacks. 
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Figure 1. Control Flow Graph
9



 

 

10

 

References 
 
[1] A. Aho, R. Sethi, J. Ullman, Compilers. Addison-Wesley, 1986. 
 
[2] E. Biham, A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems. In 
Proceedings of CRYPTO'97, Lecture Notes in Computer Science, Vol. 1294, Springer, 
pp. 513-528, 1997. 
 
[3] D. Boneh, R. DeMillo, R. Lipton, New Threat Model Breaks Crypto Codes. 
Bellcore Press Release, September 25th, 1996. 
 
[4] D. Boneh, R. DeMillo, R. Lipton, On the Importance of Checking Cryptographic 
Protocols for Faults. In Proceedings of EUROCRYPT'97, Lecture Notes in Computer 
Science 1233, Springer, pp. 37-51, 1997. 
 
[5] J.J. Quisquater, D. Samyde, Eddy Current for Magnetic Analysis with Active 
Sensor. Proceedings of E-Smart 2002. 
 


