
About an Automatic Fault Injection
Protection System

Mehdi-Laurent Akkar1 Louis Goubin Olivier Ly2

Texas Instruments France
BP 5

821 Avenue Jack Kilby
06271 Villeneuve-Loubet Cedex

France

ml.akkar@free.fr

Schlumberger Smart Cards
BP 45

36-38 rue de la Princesse
78431 Louveciennes Cedex

France

LGoubin@slb.com

LaBRI
Université Bordeaux I

351 cours de la Libération
33405 Talence Cedex

France

olivier.ly@labri.fr

Abstract

This paper describes a system aiming at enforcing semi-automatically counter-
mesures against fault injection attacks of smart cards. This system consists of a
preprocessor which processes C source code in order to make it resistant against fault
injection attacks.

1. Introduction

One of the motivations of this work is to be found in the well-known discovery of
three researchers of Bell Core (Boneh, DeMillo and Lipton) in September 1996. They
proposed a new attack model against smart cards, which they called "Cryptanalysis in
the Presence of Hardware Faults" (cf [3] or [4]). This attack model initially focused on
several public-key cryptographic algorithms: the RSA signature scheme and the Fiat-
Shamir and Schnorr authentication schemes. In [2], Biham and Shamir showed that
DES is also potentially vulnerable to this kind of attack.

In the present paper, instead of considering the special case of smart card
implementations of cryptographic algorithms, we are more generally interested in the
whole operating system of a smart card, and more precisely in its global correct
behaviour.

Fault injection attacks consist in perturbating the code execution within a smart card.
This can be achieved by intentional modification of the physical environment of the
card, for instance current glitches on the VCC, electromagnetic variations, Eddy
current (see [4]), laser emission, ... This is a serious threat for smart card security and

1 This work was done when the first author was at Schlumberger Smart Cards.
2 This work was done when the third author was at Schlumberger Smart Cards.

can be used e.g. to bypass some crucial verification steps such as signature or PIN
verification.

We present here the principle of a semi-automatic tool that secures any piece of
software implemented on a smart card, by checking that the code is correctly executed,
either concerning the intermediate steps of the different functions (code execution,
loops, tests, ...) or concerning the calls between one function to another.

The protected code maintains dynamically a history of its execution; and at some
points called control points, it checks the consistency of this history. The source code
is tagged by special flags which indicate locations to be considered; the history is
encoded by a stack which stores the list of flags which have been passed during the
execution. Then, when a control point is reached, the consistency of the contents of the
stack is checked according to some static information. If this checking fails, this means
that the location which has been reached is not consistent regarding the history of the
execution; this means that an error occured.

The preprocessor computes the achitecture of this runtime protection and includes it
into the source code to be protected. This processing follows a guideline made of a set
of directives given by the developer. These directives are of the following kinds:

• Starting points: such directives indicate the locations in the code where the
protection must start.

• Race conditions: such directives specifies some dynamic conditions to be
fulfilled by the execution of the program.

• Simple flags: such directives indicate the locations in the code to be considered
by the history.

• Control points: such directives indicate the locations in the code where history
consistency checks must by processed.

Let us note that race conditions goes beyond the scope of the protection. They actually
allow the developer to specify a run-time checking of some execution properties.
Precisely, such directives specify some families of executions, and a function defining,
according to some dynamic conditions, the actual family to which the execution must
belong. Each time a race condition is passed, a family of execution is chosen by this
function. Then, the next control points perform their checking according to this choice.

The preprocessor processes a C source code tagged by such directives. The main
ingredient of this processing is the computation of the control flow graph (see [1]) of
the program. That is the graph whose vertices are the C expressions which have to be
evaluated during execution; and arrows encode the ordering of these evaluations. This
graph is computed by a static analysis of the code. Consistent executions of the
program are encoded by paths in this graph. The preprocessor computes these paths,
and produces, for each control point, the list of consistent flag list. Each time the
program passes a control point, it verifies that the stack encoding the execution history
is consistent regarding this list; moreover, if some race condition have been set up, this

2

verification is done regarding which family of execution have been authorized.

The solution proposed here thus provides a generic protection against fault injection
attacks. Moreover, only a very limited additional work is required from the developer
to prevent his code from such attacks.

2. Basic Tools

2.1 Flags and Flag Functions

Definition: A flag is a piece of information that defines the characteristics of an
execution point of the program.

Definition: A flag function is a function that will be called by the program each time it
passes the execution point corresponding to a flag, and will consist in storing in the
shared memory some information about the flag.

Examples
A flag can be for example :

• An integer that allows to know the localisation of the flag, or a boolean that
defines e.g. whether it is the first of the last flag.

• A more complex structure that describes a set of information concerning the
current state of the electronic device that executes the code. For instance, a data
structure that characterizes, depending on the value of a register, or a given
variable, the set of flags we do NOT want to pass in the sequel of the program
execution.

A flag function can for instance execute the following operations :

• Examine if the flag is the first flag (thanks to a specific data of the flag).
o If yes, create an empty stack in the shared memory, put the flag

identifier on the stack and continue the execution of the code.
o If no, put the flag identifier on the stack and continue the execution of

the code.

2.2 Control Points, History Verification

Definition: A control point is a data structure that contains the information that will be
used in the history verification function.

Definition: A history verification function is a function that will be called at each
control point, in order to verify the consistence of the information that was stored in

3

the shared memory during the successive flag function calls.

Examples

• A control point can be defined as the set of all the lists of flags that correspond
to admissible execution paths that reach this control point.

• The verification function can consist in verifying that the contents of the stack
(list of passed flags) corresponds to one of the precomputed lists stored in the
control point. If this is not the case, an error is detected and signaled.

3. Principle of the Preprocessor
Here we describe the working of a preprocessor of C source code which enforce error
detection in a semi-automatic way.

The preprocessor transforms a C source code fragment in order to make it detect errors
at runtime.

The transformation is semi-automatic: it is driven by some special directives included
in the source code fragment to be processed. This directives can take the following
forms:

• start: this directive specifies that the flag stack must be emptied.
• flag: this directive specifies that a new flag must be pushed onto the stack.
• verify: this directive specifies that a control point intended to verify the flag

stack consistency, i.e., that the stack well records a history of flag which
corresponds to a correct execution of the program.

• race n cond: this directive specifies that if the boolean expression cond is true,
then only the execution paths of the family n will be admitted by the control
points occuring in the rest of the execution. Such a family is defined by the
directives of the following sort:

• flag !n1 ... !nk m1 ... mk: this directive specifies that the execution paths of
families n1...nk must not go across this point, and that the execution paths of
families m1...mk must go across this point.

• Loop n: this directive specifies the start of a loop whose turn number is n.

Here we give a source code fragment annotated by some directives as above. The
function int f(int x, int d) does action1(d) three times, then action2(d) if x is equal to 1.
The function action2(int d) does action21(d) and then action22(d).
The directives are written under the form of #pragma C directives. Their effect are
described in comments.

int f (int x,int d) {

 int i;

4

 /* starting point of the program part to be protected */
#pragma start

 /* definition of the possible scenarios (optional) */
#pragma race 0 x != 1
#pragma race 1 x == 1

 for(i=0; i<3; i++) {
 /* tells cfprotect that this loop has 3 turns */
#pragma loop 3
#pragma flag
 action1(d);
 }

 /* all the race must pass here, the flags are automatically numbered */
#pragma flag

 if (x == 1) {
 action2(d);
 }

 /* verification of the stack consistency, i.e. that the stack of flags
 is consistent regarding the control flow of the program */
#pragma verify
}

void action2(int d) {
 /* the race 1 must pass here and race 0 must not */
#pragma flag !0 1
#pragma verify
 action21(d);
 action22(d);
}

The source code fragment we obtain after processing is the following:

/**/
#ifdef CONTROL_FLOW_PROTECTION
#ifndef CONTROL_FLOW_PROTECTION_HEADER
#define CONTROL_FLOW_PROTECTION_HEADER
#include <string.h>
char __control_flow_stack[8];
char __cf_stack_index=0;
char __cf_race_flags=0;
char __fcPath0[] = {2, 3, 3, 3, 4, 0};
char __fcPath1[] = {2, 3, 3, 3, 4, 1, 0};
#define __cfSET_RACE(x) __cf_race_flags |= x
#define __cfRACE(x) __cf_race_flags & x
#define __cfNORACE !(__cf_race_flags)
#define __cfPUSH(x) __control_flow_stack[__cf_stack_index]=x, __cf_stack_index++
#define __cfRESET(x) __control_flow_stack[0]=x,__cf_stack_index=1,__cf_race_flags=0
#define __cfVERIFY(p) strcmp(__control_flow_stack,p)==0
#define __cfERROR printf("control flow error detected\n")
#endif

5

#endif
/**/

int f (int x, int d) {

 int i;

 /* starting point of the program part to be protected */
#ifdef CONTROL_FLOW_PROTECTION
__cfRESET(2);
#endif

 /* definition of the possible scenarios (optional) */
#ifdef CONTROL_FLOW_PROTECTION
if (x != 1) __cfSET_RACE(1);
#endif
#ifdef CONTROL_FLOW_PROTECTION
if (x == 1) __cfSET_RACE(2);
#endif

 for(i=0; i<3; i++) {
 /* tells cfprotect that this loop has 3 turns */
#pragma loop 3
#ifdef CONTROL_FLOW_PROTECTION
__cfPUSH(3);
#endif
 action1(d);
 }

 /* all the race must pass here, the flags are automatically numbered */
#ifdef CONTROL_FLOW_PROTECTION
__cfPUSH(4);
#endif

 if (x == 1) {
 action2(d);
 }

 /* verification of the stack consistency, i.e. that the stack of flags
 is consistent regarding the control flow of the program */
#ifdef CONTROL_FLOW_PROTECTION
 __control_flow_stack[__cf_stack_index]=0;
 if (!((__cfNORACE && (__cfVERIFY(__fcPath0) || __cfVERIFY(__fcPath1))) ||
 ((!(__cfRACE(1)) || (__cfVERIFY(__fcPath0))) &&
 (!(__cfRACE(2)) || (__cfVERIFY(__fcPath1))))))
 { __cfERROR; }
#endif
}

void action2(int d) {
 /* the race 1 must pass here and race 0 must not */
#ifdef CONTROL_FLOW_PROTECTION
__cfPUSH(1);
#endif
#ifdef CONTROL_FLOW_PROTECTION

6

 __control_flow_stack[__cf_stack_index]=0;
 if (!((__cfNORACE && (__cfVERIFY(__fcPath1))) ||
 ((!(__cfRACE(1)) &&
 (!(__cfRACE(2)) || (__cfVERIFY(__fcPath1)))))))
 { __cfERROR; }
#endif
 action21(d);
 action22(d);
}

The precompiler computes and introduces the data structures needed for the
verification. These data structures are divided into two sorts : static and dynamic. The
dynamic data structures are:

1. An array of byte intended to be use for the storage of the stack recording the
flags successively passed during the execution;

2. A byte recording the length of the stack;
3. A byte recording the paths families which are active.

char __control_flow_stack[8];
char __cf_stack_index=0;
char __cf_race_flags=0;

The static data record the admissible forms of the stack, in our case:

char __fcPath0[] = {2, 3, 3, 3, 4, 0};
char __fcPath1[] = {2, 3, 3, 3, 4, 1, 0};

These data are computed by the preprocessor from the control flow graph of the
program, also computed by the preprocessor (see Figure 1). The analysis of this graph
shows which sequences of flags correspond to actual execution of the program from
some starting directive to a control point.

The precompiler also defines some procedures, actually C macros, which are used
when a directive is crossed.
These procedures are:

#define __cfSET_RACE(x) __cf_race_flags |= x
#define __cfRACE(x) __cf_race_flags & x
#define __cfNORACE !(__cf_race_flags)
#define __cfPUSH(x) __control_flow_stack[__cf_stack_index]=x, __cf_stack_index++
#define __cfRESET(x) __control_flow_stack[0]=x,__cf_stack_index=1,__cf_race_flags=0
#define __cfVERIFY(p) strcmp(__control_flow_stack,p)==0
#define __cfERROR printf("control flow error detected\n")

1. __cfSET_RACE(x) is used to make active the path family x.
2. __cfRACE(x) is a boolean which is true if and only if the family x is active.
3. __cfNORACE is a boolean which is true if and only if no path family is active.
4. __cfPUSH(x) push the flag x onto the stack. Let us note that the precompiler

associate to each flag directive a unique token to be used in the stack.

7

5. __cfRESET(x) empties the stack.
6. __cfVERIFY(p) compare the current stack with an array p of flag representing

a sequence of flag intended to be admissible. Such an array is a static data
precomputed.

7. __cfERROR is the procedure to be invoked in the case of error discovery.

These functions are used to implement the error detection:

• A start directive is replaced by an initialization flag encoded by __cfRESET(x)
where x is the token associated to the flag in question.

• A flag directive is replaced by a flag encoded by __cfPUSH(x) where x is the
token associated to the flag in question.

• A race n cond is replaced by
if (cond) __cfSET_RACE(x)
where x encodes the path family n.

• A verify directive is replaced by a test, specific to the program point where the
verify directive appears, which verifies that the current flag stack well
corresponds to a correct execution, taking into account which path families
have been activated. This verification relies on the static data precomputed by
the precompiler.

• loop n directives are used by the precompiler only, they are deleted after the
processing.

In the case of our example, the verification are done at the end of the function f and in
the function action2. The array __fcPath0 and __fcPath1 define the execution paths
which are admissible. There are two families, the first one is encoded by __fcPath0,
the second one by __fcPath1. __fcPath0 corresponds to the execution which does not
involve the call to action2(), __fcPath1 corresponds to the execution which involves
action2() .

If the verification fails at some control point, this means that the current flag stack is
not consistent regarding the control flow graph of the program. This means that some
error occured in the execution.

4. Conclusion

The solution proposed here thus provides a generic protection against fault injection
attacks. Moreover, only a very limited additional work is required from the developer
to prevent his code from such attacks.

8

true

true

action2(d)

action22(d)

action21(d)

VERIFY

__cfPUSH(1) X==1

 i<3

VERIFY

i++

action1(d)

__cfPUSH(3)

true

true

__cfSET_RACE(2) X==1

 X !=1

 i=O

__cfSET_RACE(1)

__cfRESET(2)

Figure 1. Control Flow Graph
9

10

References

[1] A. Aho, R. Sethi, J. Ullman, Compilers. Addison-Wesley, 1986.

[2] E. Biham, A. Shamir, Differential Fault Analysis of Secret Key Cryptosystems. In
Proceedings of CRYPTO'97, Lecture Notes in Computer Science, Vol. 1294, Springer,
pp. 513-528, 1997.

[3] D. Boneh, R. DeMillo, R. Lipton, New Threat Model Breaks Crypto Codes.
Bellcore Press Release, September 25th, 1996.

[4] D. Boneh, R. DeMillo, R. Lipton, On the Importance of Checking Cryptographic
Protocols for Faults. In Proceedings of EUROCRYPT'97, Lecture Notes in Computer
Science 1233, Springer, pp. 37-51, 1997.

[5] J.J. Quisquater, D. Samyde, Eddy Current for Magnetic Analysis with Active
Sensor. Proceedings of E-Smart 2002.

