
A Generic Protection against
High-Order Di�erential Power Analysis

Mehdi-Laurent Akkar (makkar@slb.com),
Louis Goubin (lgoubin@slb.com)

Cryptography Research, Schlumberger Smart Cards
36-38 rue de la Princesse, BP 45, F-78430 Louveciennes Cedex, France

Abstract. Di�erential Power Analysis (DPA) on smart-cards was introduced by Paul Kocher
[11] in 1998. Since, many countermeasures have been introduced to protect cryptographic
algorithms from DPA attacks. Unfortunately these features are known not to be e�cient
against high order DPA (even of second order). In these paper we will �rst describe new
specialized �rst order attack and remind how are working high order DPA attacks. Then we
will show how these attacks can be applied to two usual actual countermeasures. Eventually
we will present a method of protection (and apply it to the DES) which seems to be secure
against any order DPA type attacks. The �gures of a real implementation of this method
will be given too.

Keywords: Smart-cards, DES, Power analysis, High-Order DPA

1 Introduction

The framework of Di�erential Power Analysis (also known as DPA) was introduced by P.
Kocher, B. Jun and J. Ja�e in 1998 ([11]) and subsequently published in 1999 ([12]). The
initial focus was on symmetrical cryptosystems such as DES (see [11, 14, 1]) and the AES
candidates (see [3, 4, 7]), but public key cryptosystems have since also been shown to be
also vulnerable to the DPA attacks (see [15, 6, 9, 10, 16]).
Two main families of countermeasures against DPA are known:
� In [9, 10], L. Goubin and J. Patarin described a generic countermeasure consisting in

splitting all the intermediate variables, using the secret sharing principle. This dupli-
cation method was also proposed shortly after by S. Chari et al. in [4] and [5].

� In [2], M.-L. Akkar and C. Giraud introduced the transformed masking method, an
alternative countermeasure to the DPA. The basic idea is to perform all the computation
such that all the data are XORed with a random mask. Moreover, the tables (e.g. the
DES S-Boxes) are modi�ed such that the output of a round is masked by the same
mask as the input.

Both these methods have been proven secure against the initial DPA attacks, and are
now widely used in real life implementations of many algorithms. However, they do not
take into consideration more elaborated attacks called �High-order DPA�. These attacks, as
described in [11] by P. Kocher or in [13] by T. Messerges, consist in studying correlations
between the secret data and several points of the electric consumption curves (instead of
single points for the basic DPA attack).
In what follows, we study the impact of the High-order DPA attacks on both countermea-
sures mentioned above. Moreover, we describe new secure ways of implementing a whole
class of algorithms (including DES) against these new attacks.

The paper is organized as follows:
� In section 2, we recall three basic notions: the (high-order) di�erential power analysis,

the duplication method and the transformed masking method.
� In Section 3, we study �duplication method� and show that an implementation of DES

(or AES), which splits all the variables into n sub-variables is still vulnerable to an n-th
order DPA attack. Section 3.1 gives the general principle of the attack and section 3.2
discusses practical aspects.

� Section 4 is devoted to the analysis of the �transformed masking� (see [2]). For such an
implementation of DES, section 4.1 describes how a �second order� DPA can work. A
new variant we call the �superposition attack� is also presented. In section 4.2, we show
that an AES (=Rijndael) implementation protected with the �transformed masking�
method can also be attacked, either by second order DPA, or by the �Zero problem�
attack.

� Section 5 presents our new generic countermeasure: the �unique masking method�. We
illustrate it on the particular case of DES. In 5.1, we explain the main idea of �unique
mask�. In 5.2, we apply it to the full protection of a DES implementation. The security
of this implementation against n-th order DPA attacks is investigated in sections 5.3
and 5.4.

� Section 6 focuses on the problem of securely constructing the modi�ed S-Boxes used
in our new countermeasure. The details of the algorithm are presented, together with
practical impacts on the amount of time and memory needed.

� In Section 7, we give our conclusions.

2 Background

2.1 The (High-Order) Di�erential Power Analysis
In basic DPA attack (see [11, 12], or [8]), also known as �rst-order DPA (or DPA when
there is no risk of confusion), the attacker records the power consumption signals and
compute statistical properties of the signal for each individual instant of the computation.
This attack does not require any knowledge about the individual electric consumption of
each instruction, nor about the position in time of each of these instructions. It only relies
on the following fundamental hypothesis (quoted from [10]):
Fundamental hypothesis (order 1): There exists an intermediate variable, that appears
during the computation of the algorithm, such that knowing a few key bits (in practice
less than 32 bits) allows us to decide whether two inputs (respectively two outputs) give
or not the same value for this variable.
In this paper, we consider the so-called High-Order Di�erential Power Analysis attacks
(HODPA), which generalize the �rst-order DPA: the attacker now compute statistical cor-
relations between the electrical consumptions considered at several instants. More precisely,
an "n-th order" DPA attack takes into account n values of the consumption signal, which
correspond to n intermediate values occurring during the computation.
These attacks now rely on the following fundamental hypothesis (in the spirit of [10]):
Fundamental hypothesis (order n): There exists a set of n intermediate variables,
that appear during the computation of the algorithm, such that knowing a few key bits
(in practice less than 32 bits) allows us to decide whether two inputs (respectively two
outputs) give or not the same value for a known function of these n variables.

2.2 The "Duplication" Method
The "duplication method" was initially suggested by L. Goubin and J. Patarin in [9],
and studied further in [4, 10, 5]. It basically consists in splitting the data (manipulated
during the computation) into several parts, using a secret sharing scheme, and computing
a modi�ed algorithm on each part to recombine the �nal result at the end. For example, a
way of splitting X into two parts can consist in choosing a random R and splitting X into
(X ⊕R) and R.

2.3 The "Transformed Masking" Method
The "Transformed Masking" Method was introduced in [2] by M.-L. Akkar and C. Giraud.
The basic idea is to perform all the computation that all the data are XORed with a ran-
dom mask. By using suitably modi�ed tables (for instance S-Boxes in the case of DES), it
is possible to have the output of a round masked by exactly the same mask that masked the
input. The computation is thus divided into two main steps: the �rst one consists in gen-
erating the modi�ed tables and the second one consists in applying the usual computation
using these modi�ed tables (the initial input being masked before starting the computation
and the �nal output being unmasked after the computation).

3 Attack on the Duplication Method

3.1 Example: Second Order DPA on DES
In what follows, we suppose that two bits b1 and b2, appearing during the computation,
are such that b1 ⊕ b2 equals the value b of the �rst output of the �rst S-Box in the �rst
DES round. The attacker performs the following steps:

1. Record the consumption curves Ci corresponding to N di�erent inputs Ei (1 ≤ i ≤ N).
For instance N = 1000.

2. The attacker guesses the interval δ between the instant corresponding to the treatment
of b1 and the instant corresponding to the treatment of b2. Each curve Ci is then
replaced by Ci,δ, which is the di�erence between Ci and (Ci translated by δ). He then
computes the mean curve CMδ of the N curves Ci,δ.

3. The attacker guesses the 6 bits of the key on which the value of b depends. From these
6 key bits, he computes for each Ei the expected value for b. he then computes the
mean curve CM'δ of all the Ci,δ such that the expected b equals 0, and CM�δ the mean
curve of all the other Ci,δ

4. If CM'δ and CM�δ do not show any appreciable di�erence, go back to 3 with another
choice for the 6 key bits.

5. If no choice for the 6 key bits was satisfactory, go back to 2, with another choice for δ.
6. Iterate the steps 2, 3, 4, 5 with two bits whose �exclusive-or� comes from the second

S-Box, the third S-Box, ..., until the eighth S-Box.
7. Find the 8 remaining key bits by exhaustive search.

3.2 The Attack in Practice
As speci�ed in the original paper [10], it is clear that the n-th duplication is vulnerable to an
n-th order DPA attack. An important point is to notice that if the method is not carefully

implemented, it will be easily detected on the consumption curve, just by identifying n
repetitive parts in the calculus. In this case, it would be easy for the attacker to just
superpose the di�erent parts of the curves (in a constant, or proportional to log(n), time,
but not exponential in n).
Moreover, in certain scenarios, the attacker has full access to the very details of the imple-
mentation. In particular, for high-level security certi�cations (ITSEC, Common Criteria),
it is assumed that the attacker knows the contents of the smartcard ROM.

4 Attack on the Transformed Masking Method

4.1 DES: Second Order DPA

4.1.1 Usual Second Order DPA: For the DES algorithm, the input of a round is
masked with a 64 bits value R = R0−31||R32−63 divided in two independent masks of 32
bits each. The modi�ed S-boxes S' are the following (where S are the original ones).

S′(X) = S(X ⊕EP (R32−63))⊕ P−1(R0−31 ⊕R32−64)

Where EP represents the Expansion Permutation, and P−1 the inverse of the P permu-
tation after the S-Boxes. We can see that using this formula the output mask of the value
at the end of a DES round is nearly R. To get exactly the R masked value, the left part of
the value has to be remasked with R0−31 ⊕R32−64.
It is clear, like noticed in the article, than this countermeasure is subject to a second-order
DPA attack. Indeed, the real output of the S-boxes is correlated to the masked value and
the value R ; so getting the electrical trace of these two values one can combine them
and get a trace on which will work a classical DPA attack. In order to perform e�ciently
such an attack, without need of n2 point like in the general attack, the attacker should get
precise information about the implementation of the algorithm: he should know precisely
where the interesting values are manipulated.

4.1.2 Superposition Attack: In this section we will present a new kind of DPA attack.
In theory it is a second-order DPA attack; but in practice it is nearly as simple as an usual
DPA attack. The idea is the following: in a second order DPA the most di�cult thing
is to localize the time where the precise needed values are manipulated. On the contrary
localizing a whole DES round is often quite easy. So instead of correlating precise part
of the consumption traces we will just correlate the whole trace of the �rst and the last
round. With these method one can notices than at one moment we will have the trace
consumption T of the following value which is the output S-Boxes values:

T = (S′(E(R15)⊕K16)⊕R′) ⊕ (S′(E(R1)⊕K1)⊕R′)
= S′(E(R15)⊕K16) ⊕ S′(E(R1)⊕K1)

Where R′ is the right part of the mask permutated by the expansion permutation. One can
notice that the T value does not depend of the random masking value and than R1 and
R15

1 are often known. Considering this, it is easy to sea that performing a guess on the
2× 6 bits of the subkey of the �rst and last round, it is possible to guess the XORed value
of the output of the S-Boxes of the �rst and last round. After that once can perform an
1 R15 can be deduced from the output applying the inverse of the �nal permutation

usual DPA-type attack attacker and �nd the values of the di�erent sub-keys of K1 and K16.
Due to redundancy of the key-bits one can moreover check the coherency of the results:
indeed with such an attack one will �nd 2×6×8 = 96 >> 56 bits for the key. The detailed
algorithm is the following:

� Correlate (usually an addition or subtraction of the curves) the �rst and last round
traces.

� For All the messages M, For the S-box j = 1..8
� For k=0 to 63, For l=0 to 63
� Separate the Messages , considering one bit of the XOR values of the output of the jth

Sbox (round 1 and 16) for the message M considering that the subkey of the S-Box j
of the �rst round is k, and the subkey of the S-Box j of the last round is l.

� Average and subtract the separated curves.
� Choose the value k, l where the greatest peak appear.
� Check the coherency of the keybits found.

A cautionary look of the attack could convince the reader that any error of one bit on
the guess of K1 or K16 eliminate all the correlation. Comparing to an usual second order
DPA attack, even if this attack require the analyze of 212 = 4096 possibilities, it has the
advantage not to need a precise knowing of the code. And from a complexity point of view
it increases by a constant factor (26 = 64) the amount of time and memory needed for the
attacker and not by a linear factor.

4.1.3 Conclusion: The superposition attack, even if it is a theoretical second order
attack is very e�cient in practice. Therefore to use transformed masking method, one
must use di�erent masks at each step of the algorithm. This idea have been developed and
adapted to produce the protection described in this article.

4.2 AES
For the AES, the countermeasure is nearly the same than in DES. The only di�erence is
that no transformed tables are used for the non-linear part of the AES (the inversion in
the �eld GF(256)) but the same table with a multiplicative mask. The distributivity of the
multiplication over XOR (addition in the �eld) is used. So from an additive mask it is easy,
without unmasking the value, to switch to a multiplicative one, to go through the Sboxes
and to get back to an the mask.

4.2.1 Usual Second Order DPA: For AES it is exactly the same than in the DES
transformed masking method. Correlating the masked value and the mask allow an e�ective
attack against this method.

4.2.2 The "Zero" problem: Because a multiplicative mask is used during the inver-
sion, one can see that if the inverted value is zero -and this value just depend of 8 bits
of the key in the �rst and last round- then whatever is the masking value, the inverted
value will be unmasked. Therefore if someone is able to detect in the consumption trace
that the value is zero instead of a random masked value, one will be able to break such an
implementation. Of course probabilistic tools such as variance analysis are devoted to such
analysis.

4.2.3 Superposition Method: As in the DES, one can say that using the same
superposition method it would be possible to �nd the key 16 bits by 16 bits superposing
the �rst and last round of AES because these are using the same mask. Unfortunately after
the last round a last subkey is added to the output of the round. So the attacker need at
least to guess 8 more bits of the key. It increase the attacker amount of work to 24 bits for
each Sbox. In theory it is not a quadratic attack in the number of samples but in practice
it is not so easy to perform more than 16 billions manipulation of the curve for each tables
and each message.

4.2.4 Conclusion: Judging by these attacks we can consider that the adaptive mask
countermeasure on AES is not e�cient even against some simpler attack than second order
ones.

5 Unique Masking Method Principle

We have seen that the actual countermeasure against DPA are intrinsically vulnerable to
high order DPA. Often the order of vulnerability is two, and even when it is theoretically
more; practically it is one or two. In the next section we will present a method to protect
the DES that seem to be e�cient against any order DPA attacks. We will �rst describe
the elementary steps of the method for after see how to construct a complete secure DES
and why it seems to be secure.

5.1 Masked Rounds
Given any 32 bits value α we will de�ne two new functions S̃1 and S̃2 based on the Sboxes
function S. {

∀x ∈ {0, 1}48 S̃1(x) = S(x⊕ E(α))
∀x ∈ {0, 1}48 S̃2(x) = S(x)⊕ P−1(α)

where E is the expansion permutation and P−1 is the inverse of the permutation after the
Sboxes.
We de�ne fKi to be the composition of E, the XOR of the ith round subkey Ki the Sboxes
and the permutation P . We then de�ne f̃1,Ki and f̃2,Ki by replacing S by S̃1 and S̃2 in f .

Remark We can see that f̃1 gives an unmasked value from a α-masked value and that, f̃2

gives a α-masked result from an unmasked one.
Using the function f , f̃1 and f̃2 one can obtain 5 di�erent rounds using masked/unmasked
values. The �gure 1 represents these �ve di�erent rounds. The plain �ll represents the
unmasked value and the dashed �ll represents masked values.
The following automata (cf �g. 2) shows how these rounds are compatible with each other.
The input states are the rounds where the input is unmasked (A and B) and the output
states are the one where the output of the rounds are unmasked (A and E).

5.2 Complete DES with Masked Rounds
It is easy to see that one could obtain a 16 round complete DES with these requirements.
IP −BCDCDCEBCDCDCDCE − FP represents a correct example (IP represents the
initial permutation of DES and FP the �nal one).

Fig. 1. Masked rounds of DES

Fig. 2. Combination of the rounds

5.3 Security Requirements

In all this section we will consider that the modi�ed Sboxes are already constructed and
that the mask α changes at each DES computation.
The �rst step is to analyze in the DES of how many key bits depends the bits of the data
at each round. This simple analyze is summarized in the �gure 3. We have also considered
that the clear and the cipher were known, explaining the symmetry of the �gure.

Fig. 3. Number of key bits / bits of data

To get a correct security we have considered that the critical data are the one where the
bits are dependant of less than 362 bits of the key. So we can see that only two parts have
to be protected: the one connecting R2 and L3 and the one connecting R15 and L16. We
de�ne as usual Li (respectively Ri) as the left part (respectively the right part) of the
message at the end of the ith round. Of course the one depending of none bits of the keys
have not to be protected.
Therefore these values must be masked and oblige the �rst three rounds to be of the form:

BCD or BCE

The last three rounds must be of the form:

BCE or DCE

2 If we consider that a curve contains 128 8 bits-samples, 36 bits represents an amount of 2 Tb of memory
needed

Taking in account these imperatives

IP −BCDCDCEBCDCDCDCE − FP

is -for example- a good combination.

5.4 Resistance to DPA

5.4.1 Classical DPA: This countermeasure clearly protect the DES against DPA of
order one. Indeed all the value depending of less than 36 bits of the key are masked by a
random mask which is used only once.

5.4.2 Enhanced Attacks: First we have to notice that this countermeasure is vulner-
able against the superposition method guessing 12 bits of the key. Indeed the same mask
is used in the �rst and last round of the DES. So to counteract this attack we will from
know consider that there's two di�erent masks α1 and α2 which are used in the �rst and
last round of DES. It is easy to see that the proposed combination of round permit at the
7th and 8th round to switch from α1 to α2 because of the structure of E-round/B-round
which leave their output/input unmasked. With evident notations we can get the following
example of DES:

IP −Bα1Cα1Dα1Cα1Dα1Cα1Eα1Bα2Cα2Dα2Cα2Dα2Cα2Dα2Cα2Eα2 − FP

Let now consider n-th order DPA attack. The idea is to correlate several value to get the
consumption of an important value. For us an important value is consider to be a value
which could be guessed with less than 36 bit of the key. But we have seen that all these
value are masked. Moreover the mask appear only once in all the calculus3, so even with
high order correlation it is impossible to get any information about the masked value

5.5 Variation

� If we want the mask never to appear several times (even on values depending on more
than 36 bits of the key) one can use the following combination instead of the proposed
one:

IP −Bα1Cα1Eα1AAAAAAAAAABα2Cα2Eα2 − FP

� For paranoid people it is even possible to add two new masks and to mask every values
depending on less than 56 bits of the key.

� This method is modular: if one uses a protocol where the input or the output are not
known, one can eliminate the associated mask.

6 E�ective Construction of the Modi�ed S-Boxes

In this section algorithms will be described using pseudo c-code.
3 We remind the reader that we have considered that the tables are already constructed. This part will
be analyzed in the next section

6.1 Principle
It is easy to see that the following operation must be performed securely in order to
construct the Sboxes S̃1.
� Generate a random α.
� Perform a permutation on α (permutation P−1).
� XOR a value (P−1(α)) to a table.
For the construction of S̃2, we need to:
� Recuperate α because it is the same than in S̃1.
� Permutate it (E(α)).
� XOR to a table containing (1..63).
Of course securely means that all these operations must be done without giving any infor-
mation about the consumption of α at any order (1,2 ...).

6.2 Generation of a Random Number: for example 64 bits
We consider that we have access to a 64 bytes array t and to a random generator (for
example a generator of bytes). We can proceed like the following:
� for(i=0..63) { t[i]=rand()%2 }
� for(i=0..63) { swap(t[i],t[rand%64]) }
With this this method one can see that we get in memory a 64 bits random value and that
an attacker just know the hamming weight of α (if he can perform an SPA attack). For
this we have considered that the attacker could not in one shot determinate what is the
array entry addressed when we swap the entries ; hypothesis which looks quite reasonable.

Variant 1: To save time and memory we can imagine the following method which is much
faster and does not look too weak. We will get 16 4-bits values in a 16 bytes array:
� for(i=0..16) { t[i]=rand() }
� for(i=0..16) { swap(t[i] AND 7,t[rand%16] AND 7) }
Indeed we can consider that the 4 bits of high weight will strongly in�uence the consump-
tion.

Variant 2: This other method produces and 8 bytes random array. It is faster but less
secure.
� for(i=0..8) { t[i]=rand() }
� for(i=0..16) { t[rand()%8] XOR= rand() }

6.3 Permutation
Classically it can be done bit per bit randomly. Against it only allow the attacker to get
the hamming weight of the permuted value.
To speed up and have a memory gain, one could perform randomly the permutation quartet
per quartet or even byte per byte. An idea could be to add some dummy values and perform
the permutation. The dummy values would just not be considered after the permutation
time.

6.4 XOR

Here a general method could be to XOR the value bit per bit in a random order to the
table. Once again many compromise are possible to perform the XOR: do it byte per byte,
add dummy values ...

6.5 Practical Considerations

The usual Sboxes are using 256 bytes. We need them but they could be stored in ROM.
For the additional tables we need to store them in RAM. In the normal security method
(two masks α1 and α2) we need to store 4 new tables. So the total requirement in RAM is
of 1024 bytes.
We have seen that the construction of the Sboxes could be performed quite securely. Of
course the most secure method is very slow and will really slow down the DES execution
and use a lot of memory. The idea was just to show that it was theoretically possible to
build the table without �ltering any information4 with a reasonable model of security5 But
we have also seen that it is possible to increase the speed and decrease the memory without
loosing too much security.

Lets now have a look at how could be applied our countermeasure to the AES algorithm.
Due to the higher number of tables (more than 16 instead of 8) and because they are bigger
(8→8 bits instead of 6→4) compared to DES, our countermeasure would require about 8
Kb (or 16 Kb for a high security level) of RAM, a size which is too big for usual smart-
cards. Some simpli�cations -which would unfortunately decrease the level of security- are
therefore necessary to apply our countermeasure to AES implementation.

7 Real implementation on the DES algorithm

A real implementation of this method have been completed on an ST19 component. It
includes the following features described in the last sections:

� SPA protections: Randomization and masking method for the permutations and the
manipulation of the key (permutations, Sboxes access...).

� DPA protection: HO-DPA Protection of the �rst and last three rounds of the DES.
� S-Boxes constructions is done bit per bit with bit per bit randomization while computing

the masking value.
� DFA Protection: multiple computation, coherence checking ...

With all this features we get an implementation with:

� 3 KB of ROM code.
� 81 bytes of RAM and 668 bytes of extended RAM
� An execution time of 38 ms at 10 Mhz.

This implementation have been submitted to our internal SPA/DPA/DFA laboratory which
have tried to attack it without success.
4 But the hamming weight of the value
5 The attacker is not able to read the exact memory access in one shot.

8 Conclusion

Opposed to other proposed countermeasures, the unique masking method presents the
following advantages:

� It is actually the only protection known against high-order DPA.
� The core of the DES is exactly the same than ordinary; so one can use with very light

modi�cation its implementation just adding the Sbox generation routine.
� The important values are masked with a unique mask which never appear in the DES

computation. For example with the transformed masking method the mask were ap-
pearing often (for a �rst mask at the whole beginning and at each rounds). Here one
do not even have to mask the entry or unmask the output.

� The only part where the mask is appearing (but it could be randomly and bit per bit)
does not depend neither of the key and neither of the message. Therefore the security
is totally focused at this point.

� This method is very �exible and modular without important changes in the code: it
could even be a compilation parameter to determine which level of security one wants.

� A real implementation have been performed proving the feasibility of this countermea-
sure in reasonable time (less than 40ms with full protections).

References
1. M.-L. Akkar, R. Bevan, P. Dischamp, D. Moyart, Power Analysis: What is now Possible. In Proceedings

of ASIACRYPT'2000, LNCS 1976, pp. 489-502, Springer-Verlag, 2000.
2. M.-L. Akkar, C. Giraud, An Implementation of DES and AES Secure against Some Attacks. In Pro-

ceedings of CHES'2001, LNCS 2162, pp. 309-318, Springer-Verlag, 2001.
3. E. Biham, A. Shamir, Power Analysis of the Key Scheduling of the AES Candidates. In Proceedings of

the Second Advanced Encryption Standard (AES) Candidate Conference, March 1999. Available from
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm

4. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, A Cautionary Note Regarding Eval-
uation of AES Candidates on Smart-Cards. In Proceedings of the Second Ad-
vanced Encryption Standard (AES) Candidate Conference, March 1999. Available from
http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm

5. S. Chari, C.S. Jutla, J.R. Rao, P. Rohatgi, Towards Sound Approaches to Counteract Power-Analysis
Attacks. In Proceedings of CRYPTO'99, LNCS 1666, pp. 398-412, Springer-Verlag, 1999.

6. J.-S. Coron, Resistance Against Di�erential Power Analysis for Elliptic Curve Cryptosystems. In Pro-
ceedings of CHES'99, LNCS 1717, pp. 292-302, Springer-Verlag, 1999.

7. J. Daemen, V. Rijmen, Resistance Against Implementation Attacks: A Comparative Study of the AES
Proposals. In Proceedings of the Second Advanced Encryption Standard (AES) Candidate Conference,
March 1999. Available from http://csrc.nist.gov/encryption/aes/round1/Conf2/aes2conf.htm

8. J. Daemen, M. Peters, G. Van Assche, Bitslice Ciphers and Power Analysis Attacks. In Proceedings
of FSE'2000, LNCS 1978, Springer-Verlag, 2000.

9. L. Goubin, J. Patarin, Procédé de sécurisation d'un ensemble électronique de cryptographie à clé
secrète contre les attaques par analyse physique. European Patent, SchlumbergerSema, February 4th,
1999, Publication Number: 2789535.

10. L. Goubin, J. Patarin, DES and Di�erential Power Analysis � The Duplication Method. In Proceedings
of CHES'99, LNCS 1717, pp. 158-172, Springer-Verlag, 1999.

11. P. Kocher, J. Ja�e, B. Jun, Introduction to Di�erential Power Analysis and Re-
lated Attacks. Technical Report, Cryptography Research Inc., 1998. Available from
http://www.cryptography.com/dpa/technical/index.html

12. P. Kocher, J. Ja�e, B. Jun, Di�erential Power Analysis. In Proceedings of CRYPTO'99, LNCS 1666,
pp. 388-397, Springer-Verlag, 1999.

13. T.S. Messerges, Using Second-Order Power Analysis to Attack DPA Resistant software. In Proceedings
of CHES'2000, LNCS 1965, pp. 238-251, Springer-Verlag, 2000.

14. T.S. Messerges, E.A. Dabbish, R.H. Sloan, Investigations of Power Analysis Attacks on Smartcards.
In Proceedings of the USENIX Workshop on Smartcard Technology, pp. 151-161, May 1999. Available
from http://www.eecs.uic.edu/∼tmesserg/papers.html

15. T.S. Messerges, E.A. Dabbish, R.H. Sloan, Power Analysis Attacks of Modular Exponentiation in
Smartcards. In Proceedings of CHES'99, LNCS 1717, pp. 144-157, Springer-Verlag, 1999.

16. K. Okeya, K. Sakurai, Power Analysis Breaks Elliptic Curve Cryptosystem even Secure against the
Timing Attack. In Proceedings of INDOCRYPT'2000, LNCS 1977, pp. 178-190, Springer-Verlag, 2000.

