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Abstract. White-box cryptography protects key extraction from software implementations of
cryptographic primitives. It is widely deployed in DRM and mobile payment applications in which a
malicious attacker might control the entire execution environment. So far, no provably secure white-
box implementation of AES has been put forward, and all the published practical constructions
are vulnerable to differential computation analysis (DCA) and differential fault analysis (DFA).
As a consequence, the industry relies on home-made obscure white-box implementations based on
secret designs. It is therefore of interest to investigate the achievable resistance of an AES im-
plementation to thwart a white-box adversary in this paradigm. To this purpose, the ECRYPT
CSA project has organized the WhibOx contest as the catch the flag challenge of CHES 2017.
Researchers and engineers were invited to participate either as designers by submitting the source
code of an AES-128 white-box implementation with a freely chosen key, or as breakers by trying
to extract the hard-coded keys in the submitted challenges. The participants were not expected to
disclose their identities or the underlying designing/attacking techniques. In the end, 94 submitted
challenges were all broken and only 13 of them held more than 1 day. The strongest (in terms of
surviving time) implementation, submitted by Biryukov and Udovenko, survived for 28 days (which
is more than twice as much as the second strongest implementation), and it was broken by a single
team, i.e., the authors of the present paper, with reverse engineering and algebraic analysis. In this
paper, we give a detailed description of the different steps of our cryptanalysis. We then generalize
it to an attack methodology to break further obscure white-box implementations. In particular,
we formalize and generalize the linear decoding analysis that we use to extract the key from the
encoded intermediate variables of the target challenge.

1 Introduction

1.1 White-Box Cryptography

Recently, security critical applications, such as digital right management (DRM) systems and mobile
payment services, have known a fast development and wide deployment on consumer electronic devices.
New threats must then be considered by security designers and analysts, since these applications are usu-
ally hosted on untrusted environments and/or the users themselves might represent potential attackers.
Ultimately, one has to consider an adversary that can access the software (on in particular cryptographic
implementations) as a white box. Generally, she could arbitrary pick the inputs for the software and
collect all the outputs and all the runtime information, such as the addresses and values of accessed
memory; she could also tamper with the implementations, e.g., altering the control flows and inject-
ing faults. Cryptographic algorithms are usually involved in these contexts to assure the confidentiality,
integrity and authenticity in several aspects. If a key embedded in a underlying implementation was
improperly protected and extracted by the attacker, not only would the pursued security goal be lost,
but also the associated business model would be threatened. For instance, an attacker could make illegal
profits by selling the revealed key in a DRM application to some purchaser in the black market for a
much cheaper price. Accordingly, it is reasonable to investigate her capability and the countermeasures to
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prevent key exposure. Informally, white-box cryptography seeks a solution to transform a cryptography
algorithm with a given key into an obfuscated implementation that gives no significant advantage to
the white-box adversary compared to the situation in which she could only access an oracle answering
encryption queries (under the same key).

Historically, the white-box concept was introduced in two seminal papers by Chow et al. [CEJVO02,
CEJv03] for cryptographic algorithms (DES and AES) used in DRM applications. The rough idea behind
their constructions is to implement a cipher as a network of precomputed and randomly encoded look-
up tables, such that an adversary is confused by seemingly useless intermediate values in the memory.
Soon, several cryptanalyses broke the underlying techniques [JBF02, BGEC04], which motivated some
remedial designs [LN05, BCD06, XL09, Kar11]. However, these proposals were eventually shown to be
vulnerable as well [GMQ07, WMGP07, MWP10, MRP13a, LRM+14, MRP13b, LR13].

On the other hand, not much formalization of white-box cryptography has been put forward. Two
initial works [SWP09, DLPR14] has introduced some formal white-box security notions. Specifically,
Saxena et al. [SWP09] demonstrate how to adapt security notions in black-box model [BGI+01] into
security notions in white-box model; while [DLPR14] formalizes the basic unbreakability property and
several other useful notions: one-wayness, incompressibility and traceability for symmetric ciphers. But
the question of how to achieve these properties for a standard symmetric cipher such as AES remains
open. Nevertheless, a lot of works [BGI+01, GGH+13b, GGH13a, LT17] have been done on the related
area of indistinguishability obfuscation [BGI+01, GGH+13b, SW14, Lin16, Lin17]. However, the current
constructions of obfuscation are still impractical and the relation between white-box cryptography and
indistinguishability obfuscation requires further investigation.

Because of the lack of practical and provably secure solutions, the industry tends to employ home-
made solutions for applications that need to be protected against key extraction in pure software. Their
security mainly relies on the secrecy of the related techniques, which contradicts with the classic Kerck-
hoffs’s principle in cryptography. In this context, two generic approaches have been used to break such
obscure white-box implementations. Similarly to differential power analysis (DPA) [KJJ99], differential
computation analysis (DCA) [BHMT16] looks for correlation between key-dependent sensitive variables
and computation traces composed of values processed in the execution of the implementation. On the
other hand, since AES is inherently vulnerable to differential fault analysis (DFA), it can be directly
applied to break a majority of the public implementations [JBF02, SMH15].

1.2 WhibOx Contest

Although no conclusions have been drawn about the pursued goals of white-box cryptography in scientific
world, the development of white-box applications continues to increase. Needless to say, plenty of home-
made solutions sold in the market, which are claimed to be secure based on the confidentiality of related
technologies and tools, would be fragile in front of a motivated attacker. In this context, the ECRYPT
CSA project organized the WhibOx workshop [whib] to fulfill the cognition of the academic progress
and industrial experiences in 2016. At this occasion, it was suggested to organize a contest on white-
box cryptography to give a playground for “researchers and practitioners to confront their (secretly
designed) white-box implementations to state-of-the-art attackers” [Whia]. One year later, the so-called
WhibOx competition was launched by ECRYPT CSA as the catch the flag challenge of CHES 2017.

In a nutshell, the participants of this contest were divided into two categories:

- the designers who were invited to submit the source codes of their white-box implementations of
AES-128 [DR13] with freely chosen key, and

- the breakers who were challenged to reveal the hidden keys in the submitted implementations.

The participants could remain anonymous (based on a pseudonymity submission system) and they were
not expected to reveal the designing or attacking techniques. The score system worked as follows: a
white-box submission can accumulate n(n + 1)/2 strawberry points if it survives for n days, and once
it is broken, the strawberry points will decrease symmetrically down to 0. A designer gets as her final
strawberry score the maximal peaking strawberries among all the challenges submitted. Similarly, a
breaker gets as banana points the number of strawberry points of a challenge at breaking time. And she
gets her final banana score as the highest banana score among all her breaks.
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Table 1. Requirements for a valid implementation on a reference CPU.

C source code ≤ 50MB

compilation time ≤ 100s

executable binary ≤ 20MB

running memory ≤ 20MB

execution time ≤ 1s

In the order to submit a valid challenge, the implementation must fulfill several requirements, recalled
in Table 1, which are relatively looser than that in a practical scenario.

As a result, the contest successfully attracted 194 players with 94 submitted implementations which
were all broken in the end for a total of 877 individual breaks. Only 13 implementations survived for
more than 1 day. These results once again demonstrate that the attackers prevail in the current cat-and-
mouse game. Nevertheless, there were interesting designs submitted that worth further discussion and
investigation.

Adoring Poitras. The strongest implementation in terms of survival time, named Adoring Poitras,5, was
submitted by Biryukov and Udovenko from the University of Luxembourg. In the sequel, we sometimes
refer to this implementation as the challenge. Its source code makes about 28MB. As it includes two
long strings with extended ASCII characters [ISO], it takes more than 30 hours for some compilers (e.g.
Clang) to finish the compilation.6

1.3 Our Contribution

This paper explains how we broke Adoring Poitras in several steps: reverse engineering, SSA transfor-
mation, circuit minimization, data dependency analysis, algebraic analysis. These different steps are
detailed in Section 2. Then Section 3 gives a generalization of our break. It first depicts a general attack
methodology against obscure white-box implementations and then formalizes and analyzes the linear
decoding analysis that we used for our break (where any of our DCA or DFA attempts would fail).

2 Breaking Adoring Poitras

We explain in this section how to gradually extract the key from Adoring Poitras in a few steps. Firstly,
we perform some reverse engineering on the source code to remove several obfuscation layers and obtain
a Boolean circuit. Then, we rewrite the Boolean circuit into single static assignment (SSA) form which
enables us to minimize it by detecting and removing many constant, redundant, and pseudorandom
computations. Based on this minimized Boolean circuit, we conduct a data dependency analysis to
identify some specific encoded operations (e.g., first round AES s-boxes). Finally, we perform a generic
algebraic analysis based on a linear decoding assumption which turned out to be true. From the processed
(encoded) data over several executions, we are able to extract the 16 AES key bytes. Overall, it took
us roughly 200 man-hours (spread over 3 weeks) to break this challenge: about one third of the time
was spent on reverse engineering; another third was for data dependency analysis and minimization of
the circuit; and the remaining time was for seeking possible attacks and applying our algebraic analysis.
Undoubtedly, we spent a lot of time on investigating reverse engineering and attack strategies that turned
out to be useless in the end. If we repeated our attack on an implementation from the same white-box
compiler but for a different key and randomness, we could probably break it in a few hours (which could
be dramatically improved with automatic tools). In the following sections, we will describe the above
steps in detail.

Overview of Original Source Code. A summarized description of the original source code of the
challenge is listed in Table 2. More specifically, it consists of 2328 lines of code, 1020 function definitions

5 The name was generated by the sever. Source code is available at https://whibox-contest.github.io/show/
candidate/777.

6 Experiments are done with Apple LLVM version 9.0.0 on macOS 10.12 and clang version 3.8.1 on Alpine Linux
3.5 (the reference OS for compiling and testing).
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Table 2. An overview of the source code of Adoring Poitras.

#lines 2328

#functions 1020

#global variables 12

funcptrs size 210

pDeoW size 221 B

JGNNvi size 15 284 369 B

and 12 global variables. Most of the global variables are pointers, but one global variable is an array of
210 function pointers (funcptrs) and two other global variables pDeoW and JGNNvi are large arrays with
numerous extended ASCII characters.

2.1 Reverse Engineering

For some reason (e.g., in order to obscure the design ideas), the source code Adoring Poitras is deliberately
obfuscated with several code obfuscation techniques, e.g., naming obfuscation, virtualization obfuscation
[Rol09]. We will go through how to unpack each obfuscation layer by reverse engineering. There is no
obvious boundary between any two steps. Let us start with readability processing.

Readability Processing. The names of all the variables, functions and parameters in the original
source code are obfuscated as shown below:

1 void xSnEq (uint UMNsVLp, uint KtFY, uint vzJZq) {

2 if (nIlajqq () == IFWBUN (UMNsVLp, KtFY))

3 EWwon (vzJZq);

4 }

5

6 void rNUiPyD (uint hFqeIO, uint jvXpt) {

7 xkpRp[hFqeIO] = MXRIWZQ (jvXpt);

8 }

9

10 void cQnB (uint QRFOf, uint CoCiI, uint aLPxnn) {

11 ooGoRv[(kIKfgI + QRFOf) & 97603] =

12 ooGoRv[(kIKfgI + CoCiI) | 173937] & ooGoRv[(kIKfgI + aLPxnn) | 39896];

13 }

14

15 uint dLJT (uint RouDUC, uint TSCaTl) {

16 return ooGoRv[763216 ul] | qscwtK (RouDUC + (kIKfgI << 17), TSCaTl);

17 }

Actually, only the 210 of these functions listed in the funcptrs are invoked in the computation,
in other words, nearly 80% of defined functions are never used. Besides, all these 210 useful functions
are duplicate definitions of only 20 functions. With the help of the above observation, we perform a
readability processing of the original code, including:

– renaming variables, functions and parameters,
– eliminating dummies and duplicates,
– rewriting constants in a meaningful way, and
– combining codes if necessary.

Technically, most of the processing here were handled manually. In the end, we acquire a source code with
20 easily understood functions shown in the code listing below. With the help of some understanding
(discussed in the following sections), these functions can be classified into several categories: input reading
and output writing, bitwise operations, bit shifts, table look-ups, assignments, control flow primitives
and dummy functions. We will refer to the their names in the following if necessary.
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1 uint a, b; // a is used in table lookup, b is used for updating

2 const uint T[] = "..."; // 2^18 uint array

3

4 /* input reading and output writing */

5 void read_plaintext(uint addr, uint pos) { assign(addr, plaintext[pos]); }

6 void write_ciphertext(uint pos, uint addr) { ciphertext[pos] = lookup1(addr); }

7 void expand_bit(uint to, uint from, uint pos) { // expand bit to unsigned long integer

8 T[(a + to) & 0x3ffff] = -((T[(a + from) & 0x3ffff] >> pos) & 1);

9 }

10

11 /* bitwise operations */

12 void not(uint to, uint from) {

13 T[(a + to) & 0x3ffff] = ~T[(a + from) & 0x3ffff];

14 }

15 void or(uint to, uint from1, uint from2){

16 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff] | T[(a + from2) & 0x3ffff];

17 }

18 void xor(uint to, uint from1, uint from2){

19 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff] ^ T[(a + from2) & 0x3ffff];

20 }

21 void and(uint to, uint from1, uint from2){

22 T[(a + to) & 0x3ffff] = T[(a + from1) & 0x3ffff] & T[(a + from2) & 0x3ffff];

23 }

24

25 /* bit shifts */

26 void right_shift_xor(uint to, uint from, uint pos) {

27 if (pos > 63) // always false

28 return;

29 T[to & 0x3ffff] ^= T[(a + from) & 0x3ffff] >> pos;

30 }

31 void left_shift_xor(uint to, uint pos, uint from) {

32 uint tmp = (T[(a + from) & 0x3ffff]) & 1;

33 T[(a + to) & 0x3ffff] ^= tmp << pos;

34 }

35

36 /* table look-ups */

37 uint lookup1(uint addr) { return T[(a + addr) & 0x3ffff]; }

38 uint lookup2(uint x, uint y) { return T[(x + y) & 0x3ffff]; }

39 void update_a() { a = lookup2(1592, (b >> 6) + ((b & 63) << 12)); }

40 void update_b() { b = 0x7fff & lookup2(522, (b >> 6) + ((b & 63) << 12)); }

41

42 /* assignments */

43 void assign_a(uint val) { a = val; }

44 void assing_b(uint from) { b = T[from] & 0x07fff; }

45 void assign(uint to, uint val) { T[(a + to) & 0x3ffff] = val; }

46 void copy(uint to, uint addr) { assign(to, lookup1(addr - a)); }

47

48 /* control flow primitives */

49 void goto_func(uint pos) { // ‘‘goto’’ in the virtual machine

50 pc = bop + pos;

51 }

52 void jump_if(uint x, uint y, uint pos) { // conditional jump

53 if (lookup2(2979, (b >> 6) + ((b & 63) << 12)) == lookup2(x, y))

54 goto_f(pos);

55 }

56
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57 /* dummy function */

58 void mistery(uint to, uint from) {

59 T[(a + to) & 0x3ffff] = T[(((~T[(a + from) & 0x3ffff]) & 0x7fff) >> 6) + 2979

60 + ((((~T[(a + from) & 0x3ffff]) & 0x7fff) & 63) << 12)];

61 }

De-Virtualization. After the readability processing, the source code is much easier to understand,
and we can observe that the overall program relies on a virtual machine as illustrated in the code listing
hereafter, which is a common obfuscation technique in modern software protection and malwares [Rol09].

1 uint T[] = "..."; // 2^18 uint memory, renamed from pDeoW

2 char program[] = "..."; // 15284369 bytes, renamed from JGNNvi

3 void * funcptrs = {"..."};

4

5 void interpretor() {

6 uchar *bop = (uchar *) program;

7 uchar *eop = bop + sizeof (program) / sizeof (uchar);

8 uchar *pc = bop;

9 while (pc < eop) {

10 uchar args_num = *pc++;

11 if (args_num == 0) {

12 void (*func_ptr) ();

13 func_ptr = (void *) funcptrs[*pc++];

14 uint *arg_arr = (uint *) pc;

15 pc += args_num * 8;

16 func_ptr ();

17 } else if (args_num == 1) {

18 void (*func_ptr) (uint);

19 func_ptr = (void *) funcptrs[*pc++];

20 uint *arg_arr = (uint *) pc;

21 pc += args_num * 8;

22 func_ptr (arg_arr[0]);

23 } else if (args_num == 2) {

24 void (*func_ptr) (uint, uint);

25 func_ptr = (void *) funcptrs[*pc++];

26 uint *arg_arr = (uint *) pc;

27 pc += args_num * 8;

28 func_ptr (arg_arr[0], arg_arr[1]);

29 }

30 // similar branches for ags_num = 3, 4, 5, 6

31 }

32 }

33

34 void AES_128_encrypt(uchar * ciphertext, uchar * plaintext) {

35 interpretor();

36 }

Specifically, the authors of the challenge implemented a virtual environment with an interpreter of a
bytecode program. The program is a sequence of instructions, each of which is either a conditional jump
to a previous instruction or a function call written in the following format:7

[number of arguments][function pointer index][argument list],

7 In fact, the conditional jump is is also implemented as a function in the same format (see goto func and
jump if functions above). Particularly, it is used for simulating the do ... while loop in a high-level language,
where the first two arguments are used for condition checking and the third arguments is the destination.
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Code 1 Structure of the bitwise program

Input: plaintext bits (b1, b2, · · · , b128), unsigned long integer table T of length 218 with initial values
Output: ciphertext bits (c1, c2, · · · , c128)

for i = 1 to 128 do
T [addr1,i]← −bi . equivalent to expand bi to unsigned long integer
for j = 1 to 63 do

T [addr1,i + j ∗ 212 mod 218]← T [addr1,i]
end for

end for

BitwiseOperationLoop1 . see Code 2
BitwiseOperationLoop2
· · ·
BitwiseOperationLoop2573

BitCombination . see Code 3

BitwiseOperationLoop2574
· · ·
BitwiseOperationLoop2582

for i = 1 to 128 do
ci ← T [addr2,i]

end for

where [number of arguments] is one byte indicating the number of arguments, [function pointer

index] is one byte giving the index of the called function within the array of function pointers (i.e.
the global variable funcptrs), and [argument list] is the sequence of arguments, each taking eight
bytes. In the runtime, the interpreter loads an instruction, then translates it into a function call with
corresponding arguments.

In order to remove this virtualization layer, we construct a new equivalent program in C language by
simulating the interpreter. In detail, after the decoding of all the instructions, we rewrite the conditional
jumps as do ... while loops, and construct function calls with their arguments from the bytecode program.
We thus get a C program composed of do ... while loops and some calls to the 20 useful functions with
hard-coded arguments.

Simplification of the Bitwise Program. The overall structure of the bitwise program is shown
in Code 1. The default data type is unsigned 64-bit integer (uint). The program contains a globally-
accessible table T (renamed from pDeoW) of 218 64-bit words (i.e., 221 bytes) initialized to some hard
coded values. In the beginning of the program, each bit bi is expanded to a full word (by the operation
−bi mod 264) which is assigned to some location addri,1 in T . Then, each expanded bit T [addri,1] is

copied to 63 locations addr
(1)
i,1 , addr

(2)
i,1 , · · · , addr

(63)
i,1 in the table, where

addr
(n)
i,1 = addri,1 + 212 · n mod 218.

Then the program performs a sequence of 2573 bitwise operation loops, followed by one bit combination
loop (pictured in Code 3 below ), then by 9 additional bitwise operation loops. The bit combination
loop is the only one to involve bit shifts. In comparison, bitwise operation loops only perform bitwise
operations (i.e., binary operations applied in parallel to each bit slot of 64-bit operands). In the end, the
program outputs each ciphertext bit from a different location addr2,i in table T .

Loops before BitCombination. Through basic debugging methods, we observe that the bitwise oper-
ation loops are each composed of 64 iterations performing up to 504 statements (except the very last
loop which has 2051 statements). The basic structure of these loops is depicted in Code 2 hereafter. A
statement simply consists in a bitwise operation (xor, or, and, not) with one or two operands picked from

7



different locations in the table T . The result of the bitwise operation is stored at another location in T .
We denote by {addr1, addr2, · · · , addrN} the accessing address sequence, namely, the locations read and
written in table T by the statements (in chronologic order) in the first round of loop.

Code 2 Example of a bitwise operation loop

for i = 0 to 63 do
j ← P (i) . P is a permutation of {0, 1, · · · , 63} and P (0) = 0
T [addr3 + j ∗ 212 mod 218]← T [addr1 + j ∗ 212 mod 218]⊕T [addr2 + j ∗ 212 mod 218]
T [addr5 + j ∗ 212 mod 218]← T [addr3 + j ∗ 212 mod 218]∧T [addr4 + j ∗ 212 mod 218]
T [addr8 + j ∗ 212 mod 218]← T [addr6 + j ∗ 212 mod 218]∨T [addr7 + j ∗ 212 mod 218]
T [addr9 + j ∗ 212 mod 218]← ¬T [addr8 + j ∗ 212 mod 218]

...
end for

All these addresses are computed from a global variable a which is updated in each loop iteration
using a second global variable b and an update mechanism as follows:

1 int a, b; // global variables

2

3 assign_b(219964);

4 do{

5 update_a();

6 // bitwise operations

7 // ...

8 // ...

9 update_b();

10 } while(lookup2(2979,(b>>6)+((b&63)<<12))!=lookup2(815257, 237931));

Let us denote by a0, a1, . . . , a63, the successive values taken by the global variable a in the 64
iterations, so that the ith instruction addri = aj + ci in iteration j, where ci is constant and 0 ≤ j ≤ 63.
By inspecting the sequence of aj ’s, we observe that it satisfies

aj = a0 + pj · 212 mod 218 , (1)

where pj ∈ {0, 1, . . . , 63} for every j. Moreover, a closer inspection shows that pj = P (j) for some per-
mutation P defined over {0, 1, . . . , 63}. We did not try to understand whether there was some underlying
mathematical principle in P (beyond the fact it is a permutation).

At this point, we aim to identify some properties of these loops that would reveal some structure
in the program. One interesting observation is that for some loops, there exist 1 ≤ i, j ≤ N and i 6= j
such that addri is a reading address, and addrj is a writing address, and addri ≡ addrj mod 212 (that is
ci ≡ cj mod 212). This implies that some memory locations are both read and written during the loop
execution. Such loops are said to be overlapping ; the other loops are said to be non-overlapping. There
are 1020 overlapping loops and 1562 non-overlapping loops in the program. Besides, there is no isolated
(non)-overlapping loop in the program. With this observation, the programs is divided into 27 parts,
each of which only consists of either overlapping or non-overlapping loops. In the beginning, we thought
this partition was related to the AES round operations, but we did not extract any useful information
out of this observation.

Afterwards, by inspecting some arbitrary overlapping loop, we can observe that its inner statements
simply consist in some swaps between memory locations in the table T . These swaps are implemented
through different sequences of bitwise operations. A sample code is listed in Appendix A.1. Moreover
we can further observe that two swapped addresses are always equivalent modulo 212. More noteworthy,
these swaps seemed useless with respect to the functional correctness of the program. We thus obtain our
first simplified program by removing all overlapping loops (except for the BitsCombintaion discussed
in the next paragraph). We believe the simplified code is functionally equivalent to the original program
since their outputs always match on many randomly chosen inputs. Furthermore, since the remaining
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loops are non-overlapping (i.e. all the written memory locations are not used during the execution of
the current loop), the permutation P can be replaced with the identity function (i.e., P (j) = j, 0 ≥
j ≥ 63). Or even better, we can rewrite the do ... while loop as a for loop from 0 to 63. We again verify
our conjecture by comparing the program outputs before and after modification for a large number of
encryptions (of random plaintexts). Now we acquire a new simpler version in which the permutations
before BitCombination are all removed.

Code 3 BitCombination (reconstructed for comprehension)

for ` = 1 to 129 do
T [addr3,`]← v` . v` ∈ GF(2) is a constant
for j = 1 to 64 do

T [addr3,`]← T [addr3,`]⊕ Parity(T [addr4,` + j ∗ 212 mod 218])
T [addr3,`]← T [addr3,`]⊕ Parity(T [addr5,` + j ∗ 212 mod 218])

end for
end for

Parity(x) (the number of 1-bits in x modulo 2)

r ← 0
for i = 0 to 63 do

r ← r ⊕ (x� i)&1
end for
return r

BitCombination and the remaining loops. Code 3 illustrates how BitCombination works. It first as-
signs 129 locations (addr3,`)1≤`≤129 in T with Boolean constants (namely either 0x00...00 or 0x00...01).
Then each of these table locations is further xor-ed with the parity bits (each of which is computed
through 64 simple instructions,) of 128 different values stored in addr4,` + j ∗ 212 mod 218 and addr5,` +
j ∗ 212 mod 218, for some addresses addr4,` and addr5,` and for 1 ≤ j ≤ 64. The 129 64-bit words out-
put from BitCombination are hence Boolean variables. Moreover, after the remaining loops, all the
ciphertext bits are the least significant bits of some specific 64-bit words in T . Therefore, we deduce that
only the least significant bits of the remaining computations after BitCombination take effects in the
outputs, i.e., everything happening after BitCombination can be seen as a Boolean circuit.

Besides, we observe that only a single iteration in the last bitwise operation loop affects the output
ciphertext, which means that we can replace this loop by a single iteration (for a given value of the loop
index i). Then we can reiterate this observation with the loop before, and so on until the BitCombina-
tion loop. In the end, the operations after BitCombination is simplified as a Boolean circuit made of
one iteration of each former loop.

Entire Transformation to a Boolean Circuit. Similar observations and conjectures can be applied to
the loops before BitCombination. Specifically, observing that all the operations are bitwise and that any
two bits in different positions of the operands never communicate with each other until BitCombination,
we conjecture that

(1) the ith bit of the intermediate values in the jth loop iteration corresponds to one independent partial
AES computation (i.e. not complete without the operations after BitCombination),

(2) only one (or odd number of) such independent computation(s) in 64*64 of them is (are) real.

To verify this conjecture, we tried to execute BitCombination while skipping one bit index 1 ≤ i ≤ 64
in the parity computation for one loop index 1 ≤ j ≤ 64. For three pairs (i, j), we observed the 129
outputs of BitCombination were constant to 0 over several plaintexts. We deduced that real AES
computations are performed in the ith bit slot of the jth iteration for (i, j) ∈ {(42, 26), (58, 32), (10, 48)}
before BitCombination. Therefore, we can simplify the code by picking any single separate AES com-
putation and verify our guess in the usual way. Accordingly, the bitwise program is fully transformed
into a Boolean circuit.
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2.2 Single Static Assignment Form

Although we get a Boolean circuit, we still lack knowledge about how it works, e.g., where each round
is computed. As in a typical unpacking story, we perform some static and dynamic analyses to acquire
more information. In the current representation, many intermediate variables are both written and read
several times, which presumably hides some facts on the data flow. In compiler theory, a program in
single static assignment (SSA) form means that every variable is assigned (defined or written) once, but
can be read for multiple times after its assignment. (The memory used in a SSA formatted program is
then about its number of instructions.) The SSA form of a program thus looses the data dependency by
reducing the meaningless interlaced dependences introduced by variable reuse. In order to transform our
Boolean circuit into SSA form, we rewrite through the few following steps:

1. Declare a global counter c = 0, and an empty associative map (hashmap) H.
2. For each statement, replace

a) each its reading address(es) addrr with H(addrr),
b) and its writing address addrw with c,

then we set H(addrw) = c and c = c+ 1.

After this transformation, the program is in SSA form: every memory location is written exactly once
and only read after its assignment.

2.3 Boolean Circuit Minimization

After SSA transformation, we attempt to minimize the program in several aspects. Our goal here is
to decrease the computation complexity in the subsequent analysis techniques that will then target a
smaller circuit. We define a few minimization steps (described below) and we iterate over these steps
several times until we cannot reduce it any more.

Detection and removal of constants. We execute the Boolean circuit for a large (e.g., 2048) number of
times with randomly sampled inputs and record the computation traces (which consist of the ordered
sequences of written values). Then, for each location in these computation traces, we check if the written

value is always the same. Formally, denoting ith computation trace by (v
(i)
1 , v

(i)
2 , · · · , v(i)t ), where t is the

size of the trace (i.e. the number of Boolean instructions), we check whether

v
(1)
j = v

(2)
j = · · · = v

(N)
j = c ∈ {0, 1},

for some index j and for sufficiently large N . If so, we consider that the jth instruction calculates a
constant and we replace the corresponding variable by the constant c. We then propagate this constant
according to the following Boolean relations:

v ∧ 0 = 0, v ∧ 1 = v,
v ∨ 0 = v, v ∨ 1 = 1,
v ⊕ 0 = v, v ⊕ 1 = ¬v,

(2)

where v ∈ {0, 1}. This propagation results in the saving of further instructions.
In an idealized model where all the variables are uniformly distributed, the probability of false judge-

ment is 2−N . The complexity to perform the detection is of O(N · t).

Detection and removal of duplicates. We proceed in a similar way as above to detect and remove du-
plicates. Namely, we observe whether for two locations in the computation traces the written values are
always the same. Formally, we check whether

(v
(1)
j1

= v
(1)
j2

) ∧ (v
(2)
j1

= v
(2)
j2

) ∧ · · · ∧ (v
(N)
j1

= v
(N)
j2

),

for some pair of indexes (j1, j2) and for sufficiently large N . If so, we consider that the related statements
are duplicated computations and that the j1th and j2th variables are a pair of duplicates. Then we
remove one of the instance and replace all its apparitions in the program by the other variable.

As above, the probability of false judgement in a idealized model is of 2−N . The complexity to perform
the detection is of O(N · t2).
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Detection of Boolean inverse. The detection of Boolean inverse is similar to the detection of duplicates
but instead, we check whether

(v
(1)
j1

= ¬v(1)j2 ) ∧ (v
(2)
j1

= ¬v(2)j2 ) ∧ · · · ∧ (v
(N)
j1

= ¬v(N)
j2

) ,

for some pair of indexes (j1, j2) and for sufficiently large N . If so, we can replace the statement computing
vj2 by a simple NOT instruction on input vj1 (assuming j1 < j2), which is likely to induce further
simplifications while looping on the minimization steps.

Detection and removal of pseudorandomness. Here we look for pseudorandom which are variables used
to randomize subsequent intermediate results without affecting the final result. In order to check whether
an intermediate variable serves as pseudorandom, we try to flip its value and check whether the output
always matches the output in a normal execution. Formally, denoting xi and yi the input and output of
the ith execution, we flip the jth variable by inserting a statement vj = ¬vj right after the assignment
of vj . Then we check whether

(y1 = y′1) ∧ (y2 = y′2) ∧ · · · ∧ (yN = y′N ),

where y′i denotes the output of the execution with the flipping statement on input xi. If so, we consider vj
to be some pseudorandomness and we replace it by a constant, e.g., 0. This constant is then propagated
as described above which results in the saving of further instructions.

The probability of false judgement is not clear but is should quickly becomes negligible as N grows
(as vj might affect several bits of the output). The complexity to perform the detection is of O(N · t).

Remark 1. A variable might impact the output result and be used as pseudorandomness at the same
time. In the above detection, we can only detect the variables solely for pseudorandomness. Rather to
flip an intermediate variable, a more effective way is to flip an operand in a statement. In this sense,
the flippable operand corresponds to a pseudorandom usage of the variable and it can be replaced by a
constant.

Detection and removal of dead (dummy) code. A dead statement is an instruction writing a value which
is never used in the subsequent computation. Dead might be introduced by the above minimization steps
or by the removal of subsequent dead code. The detection and removal process is a progressive iteration
procedure.

Application to Adoring Poitras. We apply these minimization steps to reduce the Boolean circuit recovered
after the reverse engineering of Adoring Poitras. We apply each step between 2 and 5 times except for
the removal of dummy variables that is applied a dozen of times. We obtain a minimized circuit of 280K
gates (Boolean instructions), which is half of the original size.

2.4 Data Dependency Analysis

A visual way to analyze data dependency of a circuit is to plot its data dependency graph (DDG), a
directed acyclic graph (DAG) in which a vertex stands for an intermediate variable (an address in T in our
case) and a directed edge means a variable (ending vertex) is computed from another variable (starting
vertex). We extract and plot data dependency graph of our minimized circuit using Mathematica.8

Specifically, for each statement in the minimized circuit, we first generate one/two directed edges from
the addresses of its operands to the address of its destination; then we get an ordered sequence of edges
according to the order in which the relevant gates appear in the circuit. Then we invoke the Graph

function of Mathematica with the sequence of edges to plot the DDG. At first, we attempt to plot a
figure for the whole DDG, but fail since it is too costly to produce such a large graph for Mathematica
with a standard computer. Then we try to plot some smaller part of the circuit DDG, starting with
the first 20% which looks like a mess as shown in the left of Figure 1. Afterwards, we try plotting the
first 10% of the DDG as shown in the right of Figure 1, but we cannot still extract too much valuable
information except that we observe some kind of symmetry as illustrated by the red line on the figure.

8 See https://www.wolfram.com/mathematica/.
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We keep going and plot the 5% of the DDG as represented in Figure 2 which reveals much more structure
than our previous observations. A mysterious “ball” is located in the center of the graph, which is mainly
composed of the first edges (i.e. the beginning of the circuit), and 16 “branches” come out from this
central ball, divided into four groups for which the four branches eventually join. The plotted circuit
starts from the center and ends with flake structures. Seemingly, the beginning of the circuit has a highly
complex data dependency and the variables inside are deeply mixed together and then extensively used
in the future computation since our minimization process cannot get rid of them.

Extracting S-Box Encodings. Based on our knowledge of the AES structure, we make the heuristic
assumption that the “branches” correspond to the 16 s-box computations in the first round of AES which
are then mixed four by four through the MixColumns operations.

If our assumption is correct, the set of outgoing variables of a branch (i.e. the set of variables computed
inside the branch and which are used later in the program) must be an encoding of the output s-box value.
In order to extract the set of outgoing variables, we apply modularity-based clustering algorithms [New04]
to the data dependency graph. Specifically, we apply the Mathematica function FindGraphCommunities

to the first 5% of the DDG. The graph is then divided into several communities (clusters) in a way
that the vertices in the same community have a denser connection than a set of vertices from different
communities. This way, we can isolate each “branch” in Figure 2 and obtain the corresponding set
of vertices from which we extract the set of outgoing variables. Note that in practice, the clustering
algorithm was not necessarily applied the first 5% of the DDG but a tuning over the search window
was manually applied (see details in Table 3 below). The number of vertices in the recovered clusters is
between 439 and 615 per cluster, and the number of outgoing variables scales from 29 to 57.

At this step we have 16 sets of variables which are presumably 16 encodings of the first round s-box
outputs. We now explain how we could break these encodings and recovered the corresponding secret
key bytes.

2.5 Algebraic Analysis

Let us denote by v1, v2, . . . , vt, the t outgoing (binary) variables of an s-box cluster, that presumably
encode an s-box output. Let us denote by x the plaintext byte and by k∗ the secret key byte corresponding
to this s-box computation. Then, if our data dependency analysis is correct (namely if the vi’s indeed
encode the s-box output), there exists a deterministic decoding function dec : {0, 1}t → {0, 1}8 satisfying:

dec : (v1, v2, . . . , vt) 7→
(
Sbox(x⊕ k∗)[0], . . . ,Sbox(x⊕ k∗)[7]

)
(3)

where Sbox(·)[j] denotes the jth Boolean coordinate function of the AES s-box.

Our algebraic analysis works by assuming that dec is linear (actually affine) over GF(2). As we show
hereafter, this is enough to break Adoring Poitras but it can be generalized to higher degree decoding func-
tions (see Section 3). This linear decoding assumption specifically states that for each output coordinate
j ∈ {0, 1, . . . , 7}, there exists a constant vector a = (a0, a1, a2, · · · , at) ∈ GF(2)t+1 such that

a0 ⊕
t⊕
i=1

ai · vi = Sbox(x⊕ k∗)[j] . (4)

Note that the coefficients ai are different for each output coordinate but we avoid an additional index
for the sake of clarity. In other words, the jth output bit of the s-box is encoded by a simple Boolean
sharing and its shares are distributed among the vi variables according to the ai coefficients: if ai = 1
then vi is a share of Sbox(x⊕ k∗)[j] and if ai = 0 then Sbox(x⊕ k∗)[j] is independent of vi.

To validate our assumption, we collect a set of N computation traces for the presumed s-box encoding
(v1, v2, . . . , vt). That is, we execute the white-box implementation N times with random palintexts and

record the values (v
(i)
1 , v

(i)
2 , . . . , v

(i)
t ), 1 ≤ i ≤ N , taken by the encoding variables for these N executions.

Then we iterate over the 256 possible key guesses k for the 16 possible s-box positions and try to solve
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Fig. 1. The data dependency graph for the 20% (left) / 10% (right) edges plotted by Mathematica.

Fig. 2. The data dependency graph for the 5% codes plotted by Mathematica.
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the following system of linear equations (with a0, a1, . . . , at as unknowns):


1 v

(1)
1 v

(1)
2 · · · v(1)t

1 v
(2)
1 v

(2)
2 · · · v(2)t

...
...

...
. . .

...

1 v
(N)
1 v

(N)
2 · · · v(N)

t

 ·

a0
a1
a2
...
at

 =


Sbox(x(1) ⊕ k)[j]
Sbox(x(2) ⊕ k)[j]

...
Sbox(x(N) ⊕ k)[j]

 , (5)

where x(i) denote the values taken by the plaintext byte x in the ith execution. If our linear decoding
assumption is true, then the above system is solvable for the right s-box position and the right key guess
k = k∗, which directly follows from (4), and the solution reveals the decoding function dec. On the other
hand, for an incorrect key guess, the chance to solve the system quickly becomes negligible as the number
of traces N increases above t, which will be formally discussed in Section 3.

Remark 2. Note that the selection of the outgoing variables v1, v2, . . . , vt (which are basically the fringe
edges of a cluster) is crucial for this attack to work. When a single one happens to be missing then the
system becomes unsolvable. This stresses the importance of a sound clustering step for the subsequent
success of this attack.

Practical Results. We perform the above algebraic analysis based on our linear decoding assumption
to extract the key from our minimized Boolean circuit. For each presumed s-box cluster, we extract the
outgoing variables and record a set of computation traces. Thanks to the data dependecy analysis (and
the clustering step) described above, the number t of outgoing variables is never more than a few dozens
(specifically at most 59). Moreover, we use up to N = 100 computation traces, which overall yields
some linear systems of dimensions lower than 80× 100 solvable within a few microseconds on a desktop
computer.

For each cluster, we try to solve the linear systems obtained for all the pairs (k, j) (key guess and
s-box coordinate), and all the 16 s-box positions. For most clusters, all the 8 systems obtained for a
single s-box position and a single key guess are solvable whereas the others are unsolvable (giving a
strong presumption that we have found the correct key byte). For one cluster, less than 8 systems are
solvable, but still for a single s-box position and a single key byte. And for a few other clusters, no
system is solvable at all. The two latter cases occur as a consequence of a wrong cluster selection (see
Remark 2). In these cases, we have to fine-tune the clustering step by varying the range of the input
edges to eventually get some solvable systems (each time for a single key guess). After recovering 14
out of 16 key bytes, we exhaust the remaining ones (the 6th and 12th) by brute-force search9 (over a
plaintext-ciphertext pair computed with the white-box implementation) and finally recover the full AES
key.

Table 3 depicts our practical results in details. For each of the 16 s-boxes (but the 6th and the
12th for which we use exhaustive search) it gives the range of edges in the DDG used for clustering, the
number of vertices (or variables) in the extracted cluster, the corresponding number of outgoing variables
(parameter t), the number of Boolean shares in the encoding of each s-box output bit (i.e. the Hamming
weight of the coefficient vector a), and the recovered key byte. Note that for the 8th s-box we cannot
solve the 8 systems corresponding to the right key guess but only 3 of them (which explains ‘?’ for the
number of shares).

For instance, for the third s-box, we can extract a cluster with 530 variables in the edges ranging
between 4000 and 13500 and among which 34 are outgoing variables. For this cluster we can solve the
8 linear systems. For further illustration, Table 4 exhibits the solutions of these 8 systems, where the
encoding coefficients are ordered chronologically. We observe that only 15 consecutive variables of the 34
outgoing variables are used as Boolean shares to encode the 8 output bits of the s-box. Moreover some
of these variables are involved as shares for more than one output bit of the s-box. In other words, the
decoding function is a 15-bit to 8-bit linear mapping.

9 We could probably extract these bytes through the algebraic analysis as well, but it was faster to search
exhaustively.
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Table 3. Clustering and algebraic analysis results..

s-box edge range #cluster #outgoing vars (t) #shares (HW(a)) key byte

1 9,500 - 18,000 541 30 {8,6,7,5,8,3,3,7} 0x71
2 4,000 - 18,000 543 29 {7,7,6,9,8,7,7,8} 0x3c
3 4,000 - 13,500 530 34 {8,10,8,8,6,2,6,4} 0xcf
4 9,500 - 18,000 515 38 {6,9,8,6,6,11,9,9} 0x9f
5 9,500 - 20,000 571 41 {8,6,6,4,4,9,8,10} 0x27
6 n/a n/a n/a n/a 0x45
7 9,500 - 20,000 615 42 {2,11,5,6,7,10,3,8} 0xe5
8 9,500 - 24,000 500 59 {?,10,11,?,?,14,?,?} 0xbc
9 9,500 - 20,000 448 57 {4,6,7,8,7,6,6,12} 0x04
10 9,500 - 18,000 568 36 {8,6,6,6,6,12,6,8} 0x64
11 4,000 - 18,000 523 35 {9,5,7,9,3,3,8,7} 0xb9
12 n/a n/a n/a n/a 0x07
13 9,500 - 18,000 514 30 {8,5,4,7,5,5,5,6} 0x78
14 9,500 - 20,000 454 45 {14,9,13,12,14,15,10,16} 0xf4
15 9,500 - 18,000 505 30 {8,6,6,8,8,7,4,8} 0x77
16 9,500 - 18,000 439 49 {6,8,8,8,4,6,10,6} 0x07

Table 4. The solution of the system of equations for each bit in the third byte.

bit encoding coefficients

1 0,0,0,0,0,0,1,0,1,0,1,1,1,0,0,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
2 0,0,0,0,0,0,1,0,0,1,1,0,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
3 0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
4 0,0,0,0,0,0,0,0,0,1,1,0,0,0,1,1,1,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
5 0,0,0,0,0,0,0,1,1,0,0,1,0,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
5 0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0
7 0,0,0,0,0,0,1,0,0,0,1,0,0,1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
8 0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

3 Generalization

3.1 A White-Box Attack Methodology

We present hereafter a general attack methodology to break obscure white-box implementations following
the outline of our cryptanalysis of Adoring Poitras. This methodology is organized into the five following
steps. Note that depending on the white-box implementation, it might not be necessary to apply all
these steps.

1. Initial reverse engineering. The targeted implementation is usually protected by several obfuscation
techniques (as e.g. described in [CTL97]). This first step consists in removing these obfuscation
layers, either manually or by using some automatic tools [YJWD15]. The goal is to understand the
role of each part of the code, and remove any virtualization. Of course, this step is difficult to fully
generalize and automatize. It should somehow rely on some human handwork and intuition. The
ultimate goal, for the next steps of our methodology, is to transform the implementation into an
arithmetic circuit (or a Boolean circuit as particular case). Namely, this first step must produce a
straight line program (i.e. without conditional branching) in which every instruction is of the form
vi ← vj ∗ v` for some operation ∗ lying in a defined set of operations. For instance, in the Boolean
case we would have ∗ ∈ {⊕,∧,∨}. But a white-box implementation could be defined over a larger
finite field (such as GF(2n) or GF(p)), an integer/polynomial ring, etc. An arithmetic circuit would
then be composed of additions and multiplications. But some more complicated operations could
occur and in all generality, which could be represented, e.g., by look-up tables, taking possibly more
than two input operands.

2. SSA transformation. The arithmetic circuit is then rewritten into SSA form, in which each variable
is only assigned once and accessed after its assignment. The SSA transformation is depicted in
Section 2.2.
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3. Circuit minimization. Our minimization techniques described in Section 2.3 are generic and they can
be easily extended to any algebraic structure beyond the Boolean case. Specifically, we can detect
removable intermediate variables, including constants, duplicates, pseudorandomness and dummy
variables, by executing the implementation with a large number of randomly sampled plaintexts
(along with flipping variables for detecting pseudorandomness). Then we can replace the pseudoran-
domness by 0’s, remove duplicates and dummy variables and propagate the constants according to
the different operations. The circuit minimization is an iterative process and should be conducted
for several rounds.

4. Data dependency analysis. In order to extract the key from a white-box implementation, it is usual
to focus on some specific early round operations, e.g., the first round s-boxes in a block cipher.
Observing the DDG is very insightful to locate a given operation depending on the structure of the
target cryptographic algorithm. This step can be partly automated through a cluster analysis (though
in our breaking of Adoring Poitras, the visual inspection of the DDG was necessary to parameterize
the clustering). An alternative approach is to try different windows of intermediate variables which
can be fully automated but this approach is likely to substantially increase the attack complexity
compared to an accurate localization of the target operation. Once the target operation has been
localized (or for each guessed location), we identify the corresponding set of outgoing variables which
presumably constitutes an encoding of the target variable.

5. Algebraic analysis. This last step consists in extracting some key information by analyzing the (pre-
sumed) encoding obtained from the data dependency analysis. To this purpose, we generalize and
formalize hereafter the algebraic analysis previously described in the Section 3.2. But this step could
alternatively rely on further attack techniques such as, e.g., differential computation analysis (DCA)
or differential fault analysis (DFA) [BHMT16, SMH15].

3.2 Linear Decoding Analysis

We formalize the algebraic analysis described in the Section 3.2 which we shall call linear decoding
analysis (LDA). An LDA attacker against a white-box implementation can extract the key information
contained in a set of encoded intermediate variables, provided that the underlying plain variable can be
recovered through a linear decoding.

Without loss of generality, we assume that the white-box implementation processes intermediate
variables (that can be represented) on some finite field F. Typically F = GF(2) for a Boolean circuit,
but we could have F = GF(232) for a 32-bit architecture program, or more generally F = GF(q) for any
prime (power) q. Let us denote s = ϕ(x, k∗) ∈ F the target sensitive variable where ϕ is a deterministic
function, k∗ ∈ K is a subkey for some subkey space K, and x is a part of the input plaintext (or output
ciphertext).

Similar to a DCA adversary, an LDA adversary controls a white-box implementation and she can
execute it for several plaintexts and dynamically record the corresponding computation traces. These
traces consist of ordered t-tuples v = (v1, v2, · · · , vt) of the values taken by the intermediate variables
(e.g., values read/stored in memory, results of CPU instructions, etc.), where vi ∈ F for every i. As
discussed above, these computation traces might be related to a small part of the full execution, e.g.,
when targeting a specific operation either localized by data dependency analysis or guessed using an

automated search. The adversary collects N such computation traces v(i) = (v
(i)
1 , v

(i)
2 , · · · , v(i)t ) that

correspond to N (chosen) plaintexts x(i) for 1 ≤ i ≤ N . Then, for every key guess k ∈ K, she constructs
the following system of linear equations:

1 v
(1)
1 v

(1)
2 · · · v(1)t

1 v
(2)
1 v

(2)
2 · · · v(2)t

...
...

...
. . .

...

1 v
(N)
1 v

(N)
2 · · · v(N)

t

 ·

a0
a1
a2
...
at

 =


ϕ(x(1), k)
ϕ(x(2), k)

...
ϕ(x(N), k)

 , (6)

where (a0, a1, a2, · · · , at) are the unknown coefficients in F. If the system is unsolvable for every key guess
k, then the attack fails. If the system is solvable for a single key guess k, there is a strong presumption
that it is the right key guess i.e. k = k∗, the adversary then returns k as the (candidate) correct key.
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For N sufficiently greater than t, if the above system is solvable, it means that the target intermediate
variables satisfy

a0 +

t∑
i=1

ai · vi = ϕ(x, k) . (7)

Namely, the white-box implementation encodes the sensitive variable s in the vi’s through the above
(decoding) relation. In particular the variables {vi; ai 6= 0} form a linear sharing of s. We stress that
such encoding encompasses any kind of Boolean masking or linear secret sharing of any order (see for
instance [ISW03, RP10, Bei11]). Moreover, the encoding function is not necessarily linear: one would
basically generates the masks (or the shares) pseudorandomly from the full input plaintext p, implying
that the encoding function enc : (p, k∗) 7→ (v1, v2, · · · , vt) could be of high degree in p, whereas the
decoding function dec : (v1, v2, · · · , vt) 7→ s = ϕ(x, k∗) is linear.

Complexity. LDA has complexity O(|K| · t2.8). For each key guess k ∈ K, the attack can be split
into two phases: first solve a linear system of t + 1 equations in t + 1 variables (we assume that the
corresponding square matrix is full rank without loss of generality), and then check whether the N−(t+1)
equations match the recovered solution. The complexity of the first phase is O(t2.8) by using the Strassen
algorithm [Str69].10 The second phase is then of complexity O(t · (N − t)) which is negligible compared
to the first phase since, as shown in Section 3.3, a high success probability can be obtained by taking a
(small) constant number of additional traces N − t. We thus obtain a total complexity of O(|K| · t2.8) for
the recovery of one subkey k∗ ∈ K.

Window Search. When the adversary is not able to accurately localized the target encoding among the
intermediate variables then he might apply LDA to the full computational trace (i.e. the computational
trace of the full execution). If we denote by τ the size of this full trace, then the obtained complexity is
of O(|K| · τ2.8), which might be too huge. For instance this would have made about 259 operations for
a trace of size τ ≈ 280K as obtained for the Adoring Poitras minimized circuit before data dependency
analysis (see Section 2.3).

In practice, one can significantly improve this complexity by searching the potential encoding variables
in a relatively small window of the computation trace. In a practical white-box implementation, the
computation for some specific (encoded) intermediate result, has some locality property that the related
intermediate variables are located in a t-size subtrace of the full τ -size computation trace. Formally,
in a full computation trace (v1, v2, · · · , vτ ), t consecutive points (vi+1, vi+2, · · · , vi+t), for some index i,
contain all variables to decode the target sensitive variable s. Without knowing the locality parameter
t and the right position i in the full trace, the adversary can try LDA for several t and i. Specifically,
we suggest to apply LDA on the subtrace obtained for every i ∈ {1, 2, . . . , τ − t} for an increasing
t = 21, 22, 23, . . . The total complexity is then of O(|K| · τ t2.8), where t is the right locality parameter,
which is better than the full-trace attack complexity whenever t < τ0.64.

3.3 Analysis of LDA

The soundness of LDA results from the fact that if a decoding relation such as (7) does exist for the target
intermediate variable s, and if the shares are well selected in the computation trace v = (v1, v2, · · · , vt),
then LDA will solve the system for the right key guess k∗. For a wrong key guess, on the other hand,
no solution should be find unless (1) ϕ is a linear function w.r.t. the field F, or (2) an encoding ϕ(x, k)
is computed by the implementation for a wrong key guess k× 6= k∗ (with the purpose of fooling the
attacker). These two limitations can simply be mitigated: (1) can be avoided by targeting an appropriate
intermediate result (such as an s-box output), and it is unlikely that (2) occurs for all the possible
subkeys k ∈ K which would arguably represent a huge computational overhead for the implementation
(and would become intractable as we go deeper in the computation).

We analyze hereafter the success probability of LDA under the following assumptions:

10 This could theoretically be reduced to O(t2.376) using the Coppersmith–Winograd algorithm for very large t
(see for instance [GVL96]) but in practice one shall prefer the Strassen algorithm.
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– a linear decoding relation (such as (7)) does exist between v and s,
– the plaintext (part) x is uniformly distributed,
– v is uniformly distributed among the t-tuples satisfying the decoding relation a0+

∑
i ai·vi = ϕ(x, k∗),

The two first assumptions are necessary conditions of the LDA attack context which are arguably satisfied
in some real white-box design/attack use cases (as typically considered in this paper). The last assumption
is ideal and is not necessary for LDA to work but only for the purpose of our formal analysis. It could
somehow be relaxed by considering potential statistical dependences between the variables which would
complicate the analysis without strongly impacting the result.

Proposition 1. Under the above assumptions, the probability that the LDA linear system (13) is solvable
for an incorrect key guess k× 6= k∗ is lower than |q|N−t−1, where

q
def
= max

{
Pr
(
ϕ(X, k∗) = α · ϕ(X, k×)

)
; α ∈ F∗, (k∗, k×) ∈ K2

}
. (8)

for a uniform distribution of X.

Proof. Without loss of generality, we assume that there exists a subsystem S containing t+ 1 equations
from (13) such that the corresponding matrix is full-rank (implying that S has one and only one solution
whatever the target vector).11 The solution of S is denoted a∗ = (a∗0, a

∗
1, · · · , a∗t ) for the correct key

guess k∗ and a× = (a×0 , a
×
1 , · · · , a

×
t ) for the wrong key guess k×. In the following we will consider that

the t+ 1 equations in S are the t+ 1 first equations of the system. Then, two possible cases occur:

1. There exists a constant α ∈ F such that a× = α · a∗. This implies that

ϕ(x(i), k×) = α · ϕ(x(i), k∗) , (9)

for every 1 ≤ i ≤ t+ 1. Moreover, the full system has a solution for the guess k× if and only if (9) is
further satisfied for every i ∈ {t + 2, . . . , N}. Since the x(i) are uniformly distributed, this happens
with probability at most qN−(t+1).

2. There does not exist a constant α ∈ F such that a× = α ·a∗. In that case, from our ideal assumption,
we have

a×0 +

N∑
j=1

a×j · v
(i)
j ∼ U(F) ,

(where U(F) denotes the uniform distribution over F) for every i ∈ {t + 2, . . . , N}. Then the full
system has a solution for the guess k× if and only if

a×0 +

N∑
j=1

a×j · v
(i)
j = ϕ(x(i), k×)

is satisfied for every i ∈ {t+ 2, . . . , N}, which occurs with probability ( 1
|F| )

N−(t+1) < qN−(t+1).
ut

By Proposition 1, the probability that the system (13) is solvable for the incorrect key guess k× is
exponentially small in N . In practice, an appropriately chosen ϕ makes q close to 1

|F| and the probability

quickly becomes negligible as N grows over t+ 1. Moreover, the number of extra traces required to get
a given (negligible) probability of false positive depends on the target function ϕ, but is constant with
respect to t.

As an illustration, if the target variable is a first-round s-box of AES, then

– for the Boolean case (F = GF(2)) where ϕ(k, x) = Sbox(k, x)[j] for some j, we obtain q = 9
16 and

taking, e.g., 40 extra equations makes the false-positive probability lower than 2−32;
– for the full field case (F = GF(256)) where ϕ(k, x) = Sbox(k, x), we obtain q = 7

256 and taking , e.g.,
7 extra equations makes the false-positive probability lower than 2−32.

11 According to our three assumptions, the probability that there does not exist any full rank subsystem containing
t + 1 equations is negligible.
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3.4 Extension to Higher Degrees

The linear decoding assumption necessary to LDA might not be satisfied in practice for some white-
box implementations. Depending on the algebraic structure of the encoding scheme used to protect
intermediate variables, the decoding function might have an algebraic degree greater than 1. We explain
in this section how LDA can be generalized to break implementations with higher degree decoding
functions. This generalization shall be called higher-degree decoding analysis (HDDA) in the following.

For each collected computation trace v, the HDDA adversary computes the monomial trace defined
as:

w = (1) ‖ v ‖ v2 ‖ · · · ‖ vd (10)

where ‖ is the concatenation operator and where vj is the vector of degree-j monomials:

vj = (vi1 · vi2 · . . . · vij )1≤i1≤i2≤···≤ij≤t . (11)

The size of the vector vj is the number of degree-j monomials in t variables, which equals
(
j+t−1
j

)
. The

size of the monomial trace is the number of monomials of degree lower than or equal to d, which is

t′ =

d∑
j=0

(
j + t− 1

j

)
=

(
t+ d

d

)
≤ (t+ d)d

d!
� td . (12)

From the computation traces obtained for N executions (with random input plaintext), the adversary

computes N such monomial traces w(i) = (w
(i)
1 , w

(i)
2 , · · · , w(i)

t ). Then, for every key guess k ∈ K, she
constructs the linear system:

1 w
(1)
1 w

(1)
2 · · · w(1)

t′

1 w
(2)
1 w

(2)
2 · · · w(2)

t′

...
...

...
. . .

...

1 w
(N)
1 w

(N)
2 · · · w(N)

t′

 ·

a0
a1
a2
...
at′

 =


ϕ(x(1), k)
ϕ(x(2), k)

...
ϕ(x(N), k)

 , (13)

where (a0, a1, a2, · · · , at′) are the unknown coefficients in F.
If the above system is solvable for N sufficiently greater than t′ then (with overwhelming probability)

there exists a degree-d decoding function dec (with the ai’s as coefficients) such that

dec(v1, v2, . . . , vt) = ϕ(x, k) . (14)

In particular, if the white-box encoding of the sensitive variable s = ϕ(x, k∗) can be decoded with a
degree-d function and if the shares of the encoding are well included in the computation trace, then the
above system will be solvable for k = k∗ and the solution will give the right decoding function.

On the other hand, and as for the LDA case (i.e. the case d = 1) analyzed above, the probability that
the system is solvable for a wrong key guess k 6= k∗ quickly becomes negligible as N increases (over t′),
provided that there exists no degree-d relation between ϕ(·, k) and ϕ(·, k∗) (in particular ϕ is of degree
greater than d).

Complexity. Following the complexity analysis of Section 3.2, HDDA has complexity O(|K|·t′2.8). For a
small constant d, this makes a complexity of O(|K| · t2.8d). The complexity of HDDA with window search
in a computation trace of size τ with an (unknown) locality parameter of t is then of O(|K| · τ t2.8d).

4 Conclusion

In this paper, we have explained how we could break the winning challenge (presumably the hardest) in
the recent WhibOx contest. This was done in several steps mixing reverse engineering, circuit minimiza-
tion techniques, data dependency analysis and algebraic analysis. In a second part, we have generalized
this cryptanalysis in a generic attack methodology against obscure white-box implementations and a
powerful algebraic attack against any kind of encodings with a low-degree decoding function. The latter
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requires to collect some computation traces as DCA, but it can efficiently break encodings of any order
(i.e. whatever the number of shares) where DCA wouldn’t work (or higher-order DCA would probably
have a very high complexity). Our work makes a step towards a systematic analysis of obscure white-
bow implementations and challenges the approach of using obscurity to build security in the context of
white-box cryptography.
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A Code Listings

A.1 Swapping in Overlapping Loops

Here is a code segment to show swapping implementation in two different ways by using bitwise op-
erations. The operands indicates the address in table T . The first operand is for the result, while the
remaining ones are for the inputs.

1 // swapping values in T[248329] and T[178697] where 248329 = 178697 mod 2^12

2 not(225586, 248329);

3 not( 99382, 178697);

4 not(125856, 99382);

5 xor( 13816, 225586, 99382);

6 xor( 33114, 99382, 225586);

7 not( 20933, 13816);

8 not(188758, 225586);

9 not(180239, 33114);

10 or(261865, 180239, 133397);

11 or( 94096, 20933, 133397);

12 xor(201945, 261865, 125856);

13 xor( 3792, 94096, 188758);

14 not(248329, 3792);

15 not(178697, 201945);

16

17 // swapping values in T[92413] and T[22781] where 92413 = 22781 mod 2^12

18 not( 24583, 92413);

19 not(146257, 22781);

20 xor( 67653, 146257, 133397);

21 xor(234702, 24583, 133397);

22 or(181444, 24583, 133397);

23 and(172013, 234702, 24583);

24 or(110852, 172013, 146257);

25 and(248606, 110852, 181444);

26 or( 79222, 146257, 133397);

27 and(146881, 67653, 146257);

28 or( 86050, 146881, 24583);

29 and( 44767, 86050, 79222);

30 not( 92413, 44767);

31 not( 22781, 248606);
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