
Attacking FHE-based applications by software
fault injections

Ilaria Chillotti1, Nicolas Gama2,1, Louis Goubin1

1 Laboratoire de Mathématiques de Versailles, UVSQ, CNRS, Université
Paris-Saclay, 78035 Versailles, France

2 Inpher, Lausanne, Switzerland

Abstract. The security of fully homomorphic encryption is often stud-
ied at the primitive level, and a lot of questions remain open when the
cryptographer needs to choose between incompatible options, like IND-
CCA1 security versus circular security or search-to-decision reduction.
The aim of this report is to emphasize the well known (and often under-
estimated) fact that the ability to compute every function, which is the
most desired feature of Homomorphic Encryption schemes, is also their
main weakness. We show that it can be exploited to perform very real-
istic attacks in the context of secure homomorphic computations in the
cloud. In order to break a fully homomorphic system, the cloud provider
who runs the computation will not target the primitive but the overall
system. The attacks we describe are a combination between safe-errors
attacks (well known in the smart cards domain) and reaction attacks,
they are easy to perform and they can reveal one secret key bit per
query. Furthermore, as homomorphic primitives gets improved, and be-
come T times faster with K times smaller keys, these attacks become
KT times more practical. Our purpose is to highlight the fact, that if a
semantically-secure model is in general enough to design homomorphic
primitives, additional protections need to be adopted at a system level
to secure cloud applications. We do not attack a specific construction
but the entire idea of homomorphic encryption, by pointing out all the
possible targets of this attack (encrypted data, bootstrapping keys, trans-
ciphering keys, etc.). We also propose some possible countermeasures (or
better precautions) in order to prevent the loss of information.

1 Introduction

Nowadays, more and more data is stored in the cloud, sometimes without the
owner even being aware of it. This includes all websites and databases hosted
on public servers, but also data gathered by public e-mail providers, from posts
on social networks, research patterns in major search engines, phone records,
GPS information on mobile phones. All this information has a huge economical
value. The use of secure protocols like https, imaps prevent man-in-the-middle
attacks, but for these protocols, the cloud provider itself remains the legitimate
recipient, so he keeps an unrestricted access to this valuable information. It is in
this case natural to consider an honest but curious model.



2 Ilaria Chillotti, Nicolas Gama, Louis Goubin

With homomorphic encryption, and more generally with end-to-end encryp-
tion, the setting is completely different, because the sensitive data is encrypted
with a key that the cloud does not control. Moreover, if the underlying cryptosys-
tem is semantically secure, it is natural to imagine that some cloud providers will
stop offering their services for free, and some others may even switch to more
powerful attacks, that could include data tampering, in order to regain access
to that information. To capture the second scenario, the cloud will therefore
mainly be considered untrusted and malicious in this paper. However, the cloud
will do his best to ensure that his attacks remain undetected: indeed, visible
attacks would break the client’s trust, and would incite him to stop using the
cloud services, which is obviously not the goal. Thus, in our security model, the
cloud3 is a discreet and cautious adversary.

Security model. The aim of this report is to prove that the security of an ho-
momorphic scheme cannot be assessed at the primitive level. The broader con-
struction which uses the scheme must also be taken into account in the analysis.

Cryptographic primitives are usually classified according to a standard hier-
archy of security notions: IND-CPA security, or semantic security, is generally
viewed as the standard security requirement for homomorphic encryption. State
of the art homomorphic primitives, either over the integers or based on LWE or
on principal ideal problems are usually proved semantically secure by a direct
reduction to an intractable problem. IND-CCA2 security is one of the strongest
security level, which essentially means that an attacker who chooses two mes-
sages µ1,µ2 and receives the encryption c of one of them, cannot decide which
message was encrypted, even if he is granted an oracle that can decrypt every-
thing but c. No homomorphic primitive can be IND-CCA2, since their main
feature is to be malleable. In this case, choosing feature over security seems
to be the only possible choice. Interestingly, the same question arises with the
IND-CCA1 security notion, which differs by the fact that the decryption oracle
may only be used before the challenge c is published. Some recent technical pa-
pers [37], [47], [14] prove that almost all the proposed somewhat homomorphic
schemes until now are vulnerable to non-adaptative chosen ciphertext attacks
(CCA1), which all reveal the decryption key. In fact, all the somewhat homo-
morphic primitives which are based on LWE or its ring variant, and also those
based on integers, rely on a search-to-decision reduction. This basically means
that, being able to decrypt an homomorphic primitive is equivalent to recovering
the private key, which itself reduces to solving some intractable problem in the
worst case. If this feature allows elegant IND-CPA security proofs, it also means
that any (CCA1) decryption oracle totally breaks the scheme, just by following
the steps of the search-to-decision reduction. A similar remark also applies to the
bootstrapping principle and the circular security assumption, which also contra-
dicts IND-CCA1 security. Reciprocally, it appears that IND-CCA1 somewhat

3 In this report, the term cloud denotes not only a cloud server, but also any possible
malicious actor that can access the data stored/processed, inject errors in order to
perform an attack and observe all the communications between the cloud server and
the clients.



Attacking FHE-based applications by software fault injections 3

homomorphic schemes, like [37] rely on ad-hoc security assumptions, which are
not easy to compare with more traditional LWE or SIS assumptions, or worst-
case lattice problems. At a primitive level, it seems that we are faced with an
impossible choice between security requirements (IND-CCA1) or features (FHE,
bootstrapping, worst-case assumption).
To make a choice, we need to see beyond the homomorphic primitive and con-
sider a broader view of the overall system. Namely, are there realistic situations
where the cloud would have access to some (possibly weak) decryption oracle?

We would also like to mention the notion of Indistinguishability against (Cho-
sen) Ciphertext Verification Attack (IND-CVA), which is closer to what we will
study in the rest of the report. This notion is usually defined at the primitive
level, as an intermediate security notion stronger than IND-CPA security but
weaker than IND-CCA security4. The idea of CVA dates back to the “Reaction
Attacks” of Hall, Goldberg and Schneier [33] in 1999. Instead of targeting the
hard underlying problem, their idea was to observe the “reaction” of the pri-
vate key owner, when he decrypts a tampered ciphertext. Knowing whether it
still decrypts into a valid plaintext, can sometimes provide the attacker with
some information on the message or on the secret key. The attack by Bleichen-
bacher [3] in 1998 against the RSA-PKCS#1 padding uses similar principles.
These notions have been later regrouped and re-defined in 2009 by Hu, Sun
and Jiang in [34] as Indistinguishability under Ciphertext Verification Attack
(IND-CVA). At a primitive level, IND-CVA is usually achieved by requiring a
strong padding condition on the message space, like the RSA-OAEP padding.
In the context of homomorphic encryption, IND-CVA does not seem to make
sense at the primitive level, especially when ciphertexts are full-domain, or if
the message space is too small to encode an intrinsic constraint (like the {0, 1}
message space). However, this notion should be extended at the system level,
where many individually valid ciphertexts are combined together to form some
possibly meaningful information. In this case, an attacker could replace a few
ciphertexts with other valid ciphertexts, and see if the overall information looks
still meaningful to the recipient. As already said in [37] and [46], this oracle
exists in practice, whenever the client asks the cloud for computations. If the
client thinks that the data returned by the cloud is incorrect, especially in an
economical model where the client pays the cloud per running times, he will
certainly ask the cloud for a (free) re-computation of the result, otherwise he
will just accept it. This natural behaviour can be viewed as the response of a
CVA oracle, and used as an instrument to retrieve sensitive information. As we
show in following sections, it leaks one bit of information per “query”.

Safe-Errors and Reaction. The point we want to stress is that, even if the prim-
itives at the base of homomorphic encryption schemes are secure, the whole con-
struction around presents several failures, exploitable by a malicious attacker.
Previous attacks against somewhat homomorphic encryption schemes usually
targeted mathematical weaknesses inside the primitives. As in [37] and [46], the

4 Figure 1 of [20] summarizes the connections between the different notions of security.



4 Ilaria Chillotti, Nicolas Gama, Louis Goubin

attacks we describe are more generic. They will be presented as if the primitive
was a perfect semantically secure and plaintext-aware black-box homomorphic
scheme. The attacks we will present are strongly inspired by side-channel at-
tacks in the smart-card domain, but without the need for particular equipments
(lasers, probes, etc.). In the cloud scenario, they are simple software attacks.
Overall, we perform safe-error attacks [45], whose principle is the following: the
malicious actor changes a few bits during a computation, and then, he checks if
this modification triggers an error later in the process. In the cloud setting, the
semantic security of the black box primitive, prevents the attacker from directly
obtaining a non-trivial information on the input. This is the second main dif-
ference with the smart card domain, where the result can instead be measured
immediately after the attack. This is the very reason why in the cloud domain,
the attacker needs an observable reaction from the client. If no one is aware of
this attack, the model is quite realistic: for instance, if the attacker’s modifica-
tion impacts the response at a point that the decrypted text looks gibberish, the
natural reaction of the client is to notify the cloud and ask him to re-run the
computation. We also want to emphasize the contrast between the simplicity of
these attacks, which may be qualified as “trivial” (they require almost no math-
ematical background at all), and the fact that they can be conducted in practice
for any use-case of the cloud until now. Furthermore, if heavy countermeasures
may be deployed for somewhat homomorphic schemes, they seem impractical
and useless for fully homomorphic schemes, underlining an additional antago-
nism between efficiency and security.

Our contribution. This paper is a technical report on homomorphic encryption.
The goal is to highlight a (well known) weakness of homomorphic encryption
schemes, that seems to be often ignored or underestimated. The class of attacks
we describe targets the broader constructions of such schemes. The attack is easy
to perform and it is dangerous for real world applications. We are not the first
ones talking about reaction attacks, side-channel safe-error attacks or about the
malleability of homomorphic encryption schemes. Our purpose is rather to stress
on the fact that these weaknesses are practically exploitable by a malicious ad-
versary and that the attack is easy to perform and realistic. Fully homomorphic
encryption will not be a secure solution for cloud applications, until a valuable
solution against this kind of attacks will be found. In our opinion, this family of
attacks should be taken more into account for future security analysis. Previous
papers such as [37] and [46] present similar attacks. Our contribution is a slightly
easier (but as dangerous) attack, the analysis of a larger spectrum of targets and
the proposition of some possible precautions and countermeasures.

Paper organization. The paper is composed by two main Sections 3 and 4,
preceded by a small background on Homomorphic Encryption (Section 2). In
Section 3 we describe the safe-error attack, detailing both the attack targeting
the data encrypted and stored in the cloud, and the attack against the algorithm
used to do the computations. We propose a few countermeasures, analyzing their



Attacking FHE-based applications by software fault injections 5

usefulness. In Section 4 we apply the same type of attack on schemes which use
bootstrapping (and trans-ciphering), and we also study some countermeasures.

2 Background : Homomorphic Encryption

The notion of Homomorphic Encryption dates back almost 30 years, when
Rivest-Adleman-Dertouzos [40] introduced the notion of privacy homomor-
phisms. The idea is to be able to perform homomorphic operations on encrypted
data, without the needing to decrypt.
LetM be a valid message space and C a valid ciphertext space. A homomorphic
encryption scheme is composed of four algorithms:

– The key generation algorithm KeyGen: given a security parameter λ, it
generates a private key for the client and, if necessary, a corresponding public
key.

– A deterministic decryption algorithm Dec: given a ciphertext c ∈ C and a
private key, it outputs a message m ∈M.

– A randomized encryption algorithm Enc: given a message m ∈ M and a
key (private, or public depending on the case), it outputs a ciphertext c ∈ C
such that Dec(c) = m.

– A (possibly randomized) evaluation algorithm Eval: it takes in input the
description of a k-variable function ϕ : Mk → M and k ciphertexts
c1, . . . , ck ∈ C of unknown messages m1, . . . ,mk ∈M. It outputs a ciphertext
c ∈ C such that Dec(c) = ϕ(m1, . . . ,mk).

We suppose that the primitive is always semantically secure, or even IND-
CCA1 or plaintext-aware in the sense of [37].

Depending on the evaluation algorithm, we can define different types of ho-
momorphic schemes:

– Somewhat (Partially) Homomorphic: are the schemes able to evaluate a (pos-
sibly limited) set of Boolean functions. Known examples are RSA [41], ElGa-
mal [22], Pailler [39], Boneh, Goh and Nissim [4], and all other Homomorphic
schemes (described later).

– Leveled Homomorphic: are the schemes such that for all finite set of Boolean
functions, there exists a parameter set that allows to successfully evaluate
these functions. The choice of the parameters is done at the beginning. In
general, the client chooses the parameters corresponding to the depth of the
circuit he wants to evaluate.

– Fully Homomorphic: are the schemes for which there exists a parameter set
able to evaluate all functions, without any limitation on the depth of the
circuit to be evaluated. In particular, FHE schemes are characterized by
their unique ability to evaluate their own decryption function [24].

In the following, we will use the abbreviation HE for Homomorphic Encryp-
tion, SHE for Somewhat Homomorphic Encryption, LHE for Leveled Homomor-
phic Encryption and FHE for Fully Homomorphic Encryption. The main interest



6 Ilaria Chillotti, Nicolas Gama, Louis Goubin

in HE schemes is that the evaluation can be done publicly without decrypting
the messages, and thus without revealing any secret information.

At the time of writing, various semantically secure FHE schemes have al-
ready been proposed, and they are all constructed from specific noisy SHE/LHE
schemes with a very efficient decryption algorithm, using the bootstrapping tech-
nique introduced by Gentry in 2009 [24]. The presence of noise inside ciphertexts
is necessary for security purposes, but each time an operation is performed, it
grows. Once the noise level reaches a certain amount, a correct decryption cannot
be guaranteed. The number of operations is then limited. In 2009, Gentry pro-
posed a technique, called bootstrapping [24], that can be used to “make Fully”
an SHE/LHE scheme. The scheme contains an additional Refresh procedure,
which takes as input a fixed bootstrapping key BK, and a ciphertext c ∈ C with
a high amount of noise, and returns a ciphertext c′ ∈ C of the same message,
with less noise. Initially, the refreshing procedure was generically described as
the homomorphic evaluation of the decryption circuit on each bit of the noisy
ciphertexts. In order to protect the decryption, an additional layer of encryption
is added to the ciphertexts. Furthermore, the secret key is needed in order to
decrypt. So the evaluation circuit takes in input an additional entry, the Boot-
strapping Key BK: this latter is the list of encryptions of each individual private
key bit.

µ
sk1

µ
sk1

sk2

sk1
sk2

Dec µ
sk2

Original bootstrapping idea. The straight line boxes represent the first encryption

layer, with respect to a secret key sk1, while the dashed line boxes represent the second

encryption layer, with respect to a secret key sk2. In order to reduce the noise, the

decryption circuit with respect to the key sk1 is evaluated homomorphically. The

security is guaranteed by the second layer of homomorphic encryption. The result will

be a new ciphertext encrypting the initial message, but with less noise. The encryption

of sk1 with the new key sk2 is called bootstrapping key.

Many improvements to Gentry’s bootstrapping principle consisted in remov-
ing the re-encryption phase by delaying as much as possible the operations de-
pending on the secret key, and to make them as linear as possible. Instead of
re-encrypting the noisy ciphertexts with an additional layer of homomorphic
encryption, new bootstrappings evaluate the decryption circuit directly on the
bits of the noisy ciphertext by using the encryption of the secret key (i.e. the
bootstrapping key), as schematized in next figure.



Attacking FHE-based applications by software fault injections 7

µ
sk1

c0

c1

ck

sk1
sk2

Dec µ
sk2

The bootstrapping proposed in [6] has an appealing asymptotic polynomial
complexity, refinements of [1] make the decryption algorithm almost quartic in
the security parameter, and drops to quasi-quadratic in [21], allowing to refresh
a ciphertext in 0.6s between two NAND gates. Further improvements of the
[21] scheme are proposed in [2] and in [15] (∼ 30 times faster with ∼ 40 times
smaller keys). FHE schemes base their security on hard problems, in general
hard problems in lattices (and ideal lattices) [24], [26], [42], [43], [27], [28], [25],
[29], [30]. Recently, the most promising FHE schemes rely on the Approximate
GCD problem [44], [18], [19], [17], or the Learning With Errors (LWE) problem
(and its variants) [6], [7], [8], [5], [32], [9], [21], [2], [15].

3 Safe-errors and reaction attacks in the cloud

In this section, we establish a parallel between smart-cards circuits and homo-
morphic computations in a cloud. Both are circuits which operate on hidden
data. As instance, the most frequent purpose of a smart card is to compute
digital signatures, using a private key which should never be extracted, even by
its legitimate owner. Similarly, the client may provide the bitwise homomorphic
encryption of a private key to the cloud, and let the cloud homomorphically
compute (encrypted) signatures of encrypted data. It has long been known that
smart-cards are vulnerable to side-channel attacks. Some of the attacks are pas-
sive, where an attacker gets information on the computation by measuring the
running time, the power consumption, some electromagnetic field, or any other
side channel information. For example, if the computation of an RSA [41] or
(EC)DSA signature [36], [35] uses a naive square-and-multiply/double-and-add
algorithm, the sequence of operations strongly depends on the number of “ones”
and on their positions in the secret key. In smart-cards, these attacks are usually
prevented by making the circuit data-independent or oblivious, if possible even
SIMD parallel. Other perturbations may also be introduced, like adding other
arbitrary computations that are not used in the sequel. In homomorphic compu-
tations, the above countermeasures are mandatory by design: all circuits must
be oblivious, since the semantic security of homomorphic primitives prevent the
cloud from getting any information on the data. In practice, it means that the
number of iterations of all for loops are publicly known in advance, there is no
while loop, no data-dependent jump, and the standard way of evaluating an
if-then-else block is to fully evaluate both possibilities, and in the end, to pick



8 Ilaria Chillotti, Nicolas Gama, Louis Goubin

the right result. It also means that simple power or running-time analysis are
irrelevant in the cloud, however, fault attacks are still meaningful.
In an active attack on smart cards, the attacker tampers the computation and
observes the result in order to gain information on the hidden data. For smart
cards, the hardest part is to introduce the fault at a precise moment of the
computation, because this usually requires a dedicated physical device. For this
reason, and also the fact that most of these attacks require the card pin code,
the attacker is in general the legitimate owner of the card, who just wants to
retrieve the hidden key. Furthermore, such attacks have variable success proba-
bilities, because some parts of a circuit are easier to overheat than others, and
all this must be taken into account in their analysis.
By contrast, the cloud provider has a direct and unlimited software access to the
whole circuit which is evaluated. He may tamper the result of any gate of his
choice with probability 1, at any time. The physical protection of the circuit is
replaced by the mathematical shield, which usually consists in saying that every
bit is encrypted with a semantically secure scheme. This indeed guarantees that,
without an external feedback, no attacker may conduct, on his own, any attack
(active or passive) that can reveal sensitive data.

However, some composition of schemes may grant the attacker a weak version
of a decryption oracle. For instance, the cloud provider can observe the reaction
of a person who owns the private key and who will process the result afterwards,
and hope that his behaviour reveals information on a part of the data.

3.1 Attacking the data

The idea of safe-error attacks is that during the execution of an algorithm, a
fault is injected in a precise point. For some secret values, this fault has no effect
on the final result, and for some other values, it changes the result completely.
So, by observing the correctness of the final result (or in our context the reaction
of the legitimate receiver), the attacker can retrieve the secret value targeted by
the attack.

By using the techniques from smart-cards on the cloud, we can recreate a
more realistic scenario than those involving a universal decryption oracle. Sup-
pose that we want to evaluate a function ϕ on k ciphertexts c1, . . . , ck, encrypt-
ing k messages m1, . . . ,mk ∈ {0, 1} respectively. If the evaluation is performed
without any error, the result will be a ciphertext c encrypting ϕ(m1, . . . ,mk).

m1

m2

mk

c1

c2

ck

ϕhom c ϕ(m1,m2, . . . ,mk)

CLOUD



Attacking FHE-based applications by software fault injections 9

But if an error is introduced, the final result could be wrong. As instance,
suppose the cloud wants to retrieve the value encrypted in ciphertext c1. He
could just replace this latter with a different ciphertext c̃1 encrypting 0. Then
he performs the rest of the computations correctly. The result will be a faulted
ciphertext c̃ encrypting ϕ(0,m2, . . . ,mk).

m1

m2

mk

0c̃1

c2

ck

ϕhom c̃ ϕ(0,m2, . . . ,mk)

CLOUD

If the decrypted results ϕ(m1,m2, . . . ,mk) and ϕ(0,m2, . . . ,mk) are differ-
ent, it means that an error occurred, so m1 is different from 0. Otherwise, the
guess of the cloud was correct. The cloud cannot verify this equality, because it
can access only semantically secure encrypted data.
It is here that the reaction of the client plays a crucial role. In our model, upon
reception of the ciphertext computed by the cloud, the client decrypts the mes-
sage and applies some likelihood test. Then, the cloud provider may observe two
possible reactions5 from the client: if the likelihood test failed, the client may
directly complain that the result is wrong, and ask for a free re-computation.
If the likelihood test succeeds, the client will simply accept the result. In both
cases, the cloud has received the information he needed to understand if the
safe-error was correct or not, and so retrieve the value of the encrypted bit. By
repeating the same procedure k times, the cloud will retrieve all the k bits.

As a toy example, we can think of a client asking the cloud to compute ho-
momorphically some signatures. He stores on the cloud the encrypted signature
secret key and asks to sign some data. If a safe error attack is performed on
the signature secret key, the verification of the signature (“likelihood test”) will
detect immediately if an error was introduced.

3.2 Attacking the algorithm

The spectrum of targets of safe-error attacks is wide. As well as an attack on
data, the attacker could target the algorithm itself. As instance, he could temper
the temporary variables used in the algorithm. In this section we will use the
RSA square-and-multiply always procedure (algorithm 1) as a concrete example.

5 Actually there exists some situations where the cloud could observe multiple reac-
tions from the client, but this case will be treated later in the paper.



10 Ilaria Chillotti, Nicolas Gama, Louis Goubin

Algorithm 1 RSA square-and-multiply always

1: Input : a message m, a secret key d = (d0, . . . , dk−1), a modulus N
2: Output : md mod N
3: t← m
4: for i = k − 2 to 0 do
5: t0 ←− t2 mod N
6: t1 ←− t0 ·m mod N . A safe error could target this line
7: t←− tdi mod N
8: end for
9: return t

RSA square-and-multiply always. The RSA square-and-multiply always
algorithm as it would be implemented on a smart card, or homomorphically
in the cloud. In particular, it contains no data-dependent if conditions. By
introducing an error in the execution of line 6, an attacker learns whether the
variable t1 is used or not (line 7), and therefore, he learns the key bit di. This
attack is particularly efficient, since the attacker only needs to know that he
modifies the value t1, but he does not need to control the replacement value.

In the process of making an algorithm oblivious, all conditional structures
like “if a then B else C” are replaced by “evaluate B, evaluate C, and output
aB + (1− a)C”. This strategy prevents timing attacks on smart cards, because
the set of operations that are executed do not depend anymore on a. However,
it is a natural target for safe-errors attacks. Indeed, if an attacker may tamper
the execution of the block B, and see if it has a consequence in the following. If
it is so, it means that the condition a was true.

In Algorithm 1, in order to homomorphically evaluate md mod N via some
oblivious Horner variant, each intermediate step computes t0 = t2 mod N and
t1 = m · t2 mod N , where t is initially set equal to m, and then chooses which
value to select depending on the current key bit (0 or 1 respectively). If an
attacker tampers the multiplication by m, replacing the value of t1 with any
other random (plaintext) data, this safe-error will affect the final result with
almost certainty if and only if the current private-key bit is equal to 1. Indeed, if
the key bit was null, this tampered data would simply have been discarded. Once
again, the attacker learns one key bit by observing the reaction of the recipient
to safe errors, but this time, he does not target the data directly, but a portion
of the algorithm he is able to understand.

3.3 Countermeasures

In this subsection, we study possible countermeasures to these simple attacks,
and show that the client must be very strict concerning its trust model towards
the cloud.

Add plaintext awareness (asymmetric vs symmetric encryption)? One possible
countermeasure we may think of, is to try to use symmetric plaintext-aware



Attacking FHE-based applications by software fault injections 11

schemes. Indeed, the direct attack on the hidden data requires the cloud to
replace a ciphertext with a valid ciphertext of 0 (or 1), and the idea of the
countermeasure is to prevent him from being able to generate such ciphertext.
Unfortunately, this countermeasure does not really apply to homomorphic con-
structions. The universality6 of these schemes allows them to evaluate any func-
tion, including the constant 0 or the constant 1 functions, and thus, to forge valid
ciphertexts of 0 or 1 at will. For example, if the homomorphic scheme includes
the (homomorphic) XOR or the (homomorphic) NAND gates, a valid ciphertext
of 0 may be obtained by computing XOR(c, c) for any valid ciphertext c, and a
valid ciphertext of 1 can be obtained as NAND(c,NAND(c, c)).

Work on large blocks (non-bitwise encryption)? A second proposal would be
to increase the length of the message space, so that homomorphic primitives
operate on larger blocks (for instance on 128-bits blocks) instead of just zeros
and ones. In this case, an attacker would only be able to tamper a whole block
of data, and, unless he guesses the right 128-bit value, it would always produce
a reaction from the client, which does not bring much information. But once
again, this approach is bound to fail for two reasons: it does not prevent the case
where the attacker targets a value which is not used in the sequel, which may be
replaced by any random (plaintext) value. And most importantly, once again, the
universality of homomorphic primitives allows the attacker to homomorphically
evaluate any function on a 128-bit block, including the function φi which takes
a block as input and sets its i-th bit to zero. The attacker can therefore replace
a hidden block Hom.Enc(m) of data with Hom.Enc(φi(m)) and perform the
attack. In this case, the reaction of the client reveals the value of the i-th bit of
m, as if the homomorphic primitive was just operating on binary messages.

Add obfuscation? The nature of the two attacks strongly suggest that the lo-
cation of important data bits must be hidden from the cloud, and the function
must be impossible to reverse-engineer or to understand. Achieving these goals
is usually called obfuscation. In order to prevent the attack on the data bits, an
idea would be to add some error correcting code. For instance, instead of com-
puting f(x) where x represents n bits of data, the algorithm would first compute
x = g(y) where g is some random error correcting code of large distance d > n,
and the hidden data y has at least n + 2d bits. In order to successfully invali-
date the result, an attacker would then need to flip at least d bits of data, i.e.
to fix 2d bits to arbitrary values. Of course, this is more a hint than an actual
workaround, for the following reasons:

– The code should not be perfect, and if possible non linear. Else, the reaction
attack of [33] against the McEliece cryptosystem can be adapted. Basically,
fix bits of data one by one to arbitrarily values until the client reacts. At that
point, if the code is perfect, there are exactly d+ 1 errors, so the last bit set
is wrong, and since there are already d errors among the others bits fixed,

6 Universality intended as the property of FHE schemes to evaluate all functions, due
to their large malleability.



12 Ilaria Chillotti, Nicolas Gama, Louis Goubin

each additional error induces a reaction from the client. So the classical safe
error can be conducted on the remaining data bits one by one.

– The composition between the homomorphic decoding x = g(y) and the func-
tion computation f(x) must be obfuscated to the cloud. Else, the cloud
provider may just run the code part homomorphically, and once it has the
bits of x, do the regular attack on them.

– For the same reason, the part of the circuit which computes f must be
obfuscated, else the attack on the function can be directly performed.

– If g represents the decoding function of a non-linear random looking code,
its complexity will have a serious impact on the size of the overall circuit,
and therefore on the parameter sizes of the homomorphic scheme. Besides,
the fact that the whole composition f ◦ g must be obfuscated worsens the
situation.

Overall, homomorphic encryption was often presented as the systematic way
of obfuscating a computation. But now, we see that in order to resist against
simple safe-errors, the computation has to be obfuscated again with something
larger. Obviously, taking another homomorphic scheme as the larger obfuscation
seems to create a vicious circle. And if the computation is protected with another
ad-hoc obfuscation, then what is the purpose of the first homomorphic scheme?

Do not forgive any mistake It seems that the safest approach for the client is
to distrust the cloud immediately whenever he receives a ciphertext which does
not correspond to any realistic result. For instance, if the goal of the homomor-
phic scheme is to compute signatures and the received signature is invalid, or
if the data looks like a random binary sequence instead of a plaintext message.
This also implies that the underlying homomorphic primitive must be error-free.
Indeed, many LWE-based homomorphic schemes which were recently proposed,
including [1], [21] and [15] were able to drastically reduce the parameter sizes
by requesting that the homomorphic operations are randomized, but with the
counter-effect that even an honest homomorphic computation has a small error-
probability per gate in the circuit. Namely, the parameter set proposed in [21]
and [15], which allows to bootstrap the scheme in less (or much less) than a
second, has an error probability of 2−32, which means that the result of an ho-
momorphic computation may be wrong even if no safe-error was introduced. Due
to the nature of the attack we are pointing out, allowing errors can be really
devastating, since the client would not be able to distinguish between an attack
and an honest error due to the homomorphic primitives.

4 Attacking the bootstrapping principle

In the previous section we showed how to attack a secret value stored in the
cloud and encrypted with a LHE scheme: our target was not the scheme itself.
Instead, in this section we apply the attacks directly to the bootstrapping prin-
ciple to target the secret keys of the HE scheme, highlighting that a safe-error
and reaction attack is particularly efficient in this case. There are two use-cases



Attacking FHE-based applications by software fault injections 13

of the bootstrapping mechanisms: the first one is used to proxy-re-encrypt a
message, encrypted with any scheme, into a bit-wise HE encryption of the same
message. The second notion is the original bootstrapping proposed by Gentry in
order to refresh noisy ciphertexts, and to turn a somewhat/leveled homomorphic
scheme into a fully homomorphic one. The first notion is a technique that we
denote as trans-ciphering, which is a commonly proposed optimization in order
to drastically reduce the communications from the client to the cloud.

4.1 Trans-ciphering

Homomorphic schemes are known to have a very high ciphertext vs plaintext
expansion rate. For instance, the FHEW implementation of [21] (and the vari-
ant of [15]), which is one of the most compact schemes, uses about 16000 bits of
ciphertext to encrypt one bit of message for 128-bit security. This rate is partic-
ularly annoying when the client has to upload his input data to the cloud over
the network. A solution that has been proposed in [38] is to encrypt the data
using a traditional symmetric algorithm like AES-CBC, and to send it together
with the bitwise-homomorphically encrypted AES key. That way, the data is
sent using an amortized 1-1 encryption ratio, which saves a considerable amount
of network bandwidth.
In order to perform homomorphic operations on the data, the cloud needs to con-
vert the AES ciphertext into an homomorphic ciphertext, and this is the goal of
the trans-ciphering phase: it locally re-encrypts each bit of the AES ciphertext,
and runs the AES decryption homomorphically. This principle can be applied to
any output SHE scheme with message space M, as long as ciphertexts, plain-
texts, keys, and the internal state of the input scheme can be viewed as words
in M∗, and its decryption algorithm is parallelizable, for instance ECB, CBC
or CTR modes. Homomorphic evaluation of the AES circuit has already been
intensively studied, and for instance, [31] takes a particular care optimizing the
running time of the algorithm7.

This whole construction has the huge drawback, that the secret key of the
first scheme becomes a secret data encrypted with the secret key of the output
HE scheme. This allows to apply the attack presented in previous section, with
the difference that, targeting the secret key reveals much more than just the 128
AES key bits. It allows the attacker to decrypt the whole input data. The main
security properties of symmetric ciphers guarantees that any modification of a
single key bit of a secret key renders the whole data gibberish, and will certainly
trigger the expected reaction from the client. In a practical attack scenario,
if the input data is AES-encrypted with a 128-bit AES key, the attacker may
prefer to perform the attack on first 80 key bits, which only triggers about 40
negative feedbacks from the client. Then, the attacker may simply brute-force
the remaining 48 bits off-line and decrypt all the client’s data.

7 Recent work from [10], show that different schemes (some stream ciphers for instance)
can be more “FHE friendly” than AES for trans-ciphering.



14 Ilaria Chillotti, Nicolas Gama, Louis Goubin

4.2 Bootstrapping

The bootstrapping idea is to proxy re-encrypt data from a SHE scheme to an-
other one. In this case, the noise of the output ciphertext only depends on the
(fixed) noise of the bootstrapping key, and its (fixed) expansion during the ho-
momorphic evaluation of the decryption function. Most importantly, it does not
depend on the noise of the input ciphertext, which may reach the maximal level.
Bootstrapping has been viewed as a way of bounding the noise growth, or of
“refreshing” the ciphertexts after each (or after some) elementary homomorphic
operation. The main problem, which was solved by Gentry in 2009, was to ensure
that the parameter sizes of the output SHE scheme were not too large compared
to the input SHE scheme. If possible, even take the second SHE scheme equal
to the first one. To do so, the input SHE schemes must have a very efficient
decryption procedure. For instance, integer schemes based on the approx-GCD,
or on principal ideal lattices usually perform a single modular reduction plus an
extraction of the least significant bit. Even then, the decryption circuit may still
be too large. Gentry’s first proposal, as instance, used a squashing technique,
which added a lot of partial precomputed steps of the decryption algorithm as an
additional hint, besides the encrypted private key, without weakening too much
the security assumption. Recent schemes (like GSW [32],[1], or FHEW [21], [2],
[15]) based on LWE use a quicker decryption algorithm, which only consists in a
few modular additions plus an extraction of the most significant bit. This seems
to correspond to the most complex decryption algorithm one can homomorphi-
cally evaluate within the scheme without increasing the parameter sizes, and
without additional hints.

In all cases, the algorithm or circuit which is homomorphically evaluated dur-
ing a bootstrapping procedure, or the refreshing procedure for schemes “without
bootstrapping”, is always equivalent to the official decryption function. Thus re-
covering the bootstrapping key via safe-error totally breaks the one-wayness of
all schemes based on circular security. Schemes which do not rely on circular
security but are still considered fully homomorphic provide instead, a long chain
of distinct bootstrapping keys, where each one is encrypted with the next one. In
this case, the safe error attack needs to be applied only on the last bootstrapping
key of the chain, and once it is recovered, use it to decrypt the whole chain of
keys. Again, this totally breaks the one-wayness.

4.3 Countermeasures?

Concerning the trans-ciphering attack, one could think that asking the client
never to re-use the same AES key twice is enough. In particular, the encrypted
AES key cannot be set as permanent key parameter, it must be generated and
sent by the client over the network with every new data. In fact, the situation is
much more complex than that. The actual requirement is that the cloud must
never be allowed to re-use the same data twice. For instance, if the client used
the AES trans-ciphering to transfer a whole database to the cloud, this database
must only be used to answer a single client’s query. Indeed, for the second query,



Attacking FHE-based applications by software fault injections 15

the cloud may just silently re-run locally the trans-ciphering with another safe-
error, and get another key bit, and so on until the 128-th query. Obviously, in
most practical situations, the client will not be able to prevent the cloud from re-
using the same data in many computations, so safe-errors should be considered
as a huge threat against the trans-ciphering strategy.

The obfuscation counter-measure of the previous section may work for the
trans- ciphering of LHE, but again, there exists no systematic obfuscation tech-
nique8. It must be done on a per-use basis, and it would considerably increase
the trans-ciphering complexity. This means that the output LHE scheme must
have extremely large parameters. In the bootstrappable FHE setting, obfuscation
is simply impossible: indeed, within the noise overhead of practical bootstrap-
ping, there is only enough room to express the decryption circuit as just a few
additions.

Once again, the client should really stop trusting the cloud whenever he
receives invalid data. Indeed, from what we saw with the AES attack, all his
private data may already be lost before he even sees the 40-th error.

5 Conclusion and perspectives

The attacks we pointed out in this paper are very simple. Yet, they work even on
perfect black-box primitives, and they have catastrophic consequences on data
privacy if nothing is done at the system level to prevent them. Furthermore,
in this report, we worked under the optimistic assumption that the requested
computation had a unique solution, and that any error would be detected by
the client’s likelyhood test. Of course, the situation is much worse if the problem
has multiple valid solutions, and each of those induces different visible reactions
later in the process. This includes of course any white-box use of the cloud,
where the final result is decrypted and published by the client. The cloud may
hide some key-dependent ciphertexts inside the least significant bits of floating
point statistics over encrypted medical data, or in the random bits of NTRU-like
signatures. These attacks are even more dangerous than those we presented in
the previous sections, because the client may hardly detect the attack, and in
the mean time, the cloud provider is left with a universal decryption oracle.

Picturing the realization of a scenario similar to the one we described, we
thought about some “more practical” countermeasures that can be added to the
ones already proposed in Section 3 and 4.

Random computations. The first one will be to ask the cloud for random compu-
tations : for instance if we need to compute k signatures every day, we may ask
the cloud for 2k signatures, of which k are random computations. If the cloud
performs its attack on day 1, and the client detects an error, he will substitute
the random computations of day 2 with a re-randomized ciphertext of day 1
and send to the cloud 2k computations as always. The cloud will not detect any

8 At the time of writing, IO-obfuscation is neither practical, neither secure under any
standard assumptions.



16 Ilaria Chillotti, Nicolas Gama, Louis Goubin

strange reaction from the client, and its attack will fail. But this countermeasure
is probably really costly, especially in the economical model where the client pays
per running time.

High entropy data. In the SHE or LHE settings, ensure that the data flow has
high entropy at all times, and that changing one bit of a ciphertext is impossible,
either because it exceeds the allowed noise bound (LHE), or because the oper-
ation itself cannot be expressed as a valid homomorphic operation (SHE). This
implies that ciphertexts must encode multibit messages, and it may also require
a secret key mode, where the attacker cannot easily obtain valid ciphertexts
of arbitrary plaintexts. This countermeasure is certainly the most promising
countermeasure for LHE schemes, but is not applicable to FHE because of its
universality.

Verifiable computation. The last countermeasure is to require verifiable com-
putation. The most straightforward solution is to de-randomize completely all
cloud operations, and to ask two independent cloud services to do the exact
same computations. If the two encrypted results are equal, then the client can
hope that no attack has been performed. This requires of course that the two
cloud providers do not collude. In a multi-user setting, this can be achieved by
including incentive measures to the system, so that users are rewarded when
they verify the computation (like in the bitcoin protocol). Again, this can be
expensive in terms of costs and network bandwidth for the client, unless the
function is simple enough and its total computation time is not too high (like in
the e-voting protocol of [16]).
Another possibility is to force the cloud to produce (a zero-knowledge) proof of
correct computation (against the attack on the algorithm), or a proof to demon-
strate that all the ciphertexts used in the computation were effectively the one
sent by the client (against the attack to the data). Recent works [13],[11],[12],[23],
show how to practically construct homomorphic signatures, MACs and authen-
ticators for both leveled and fully homomorphic encryption schemes. Roughly
speaking, those tools allow a user (or multiple-users) to verify if the compu-
tations done by the cloud are correct and if the set of data taken in input is
actually the good one. This indeed prevents safe errors. Intuitively, to verify
the validity of a (deterministic) polynomial function against random errors, it
suffices to check all the computations modulo a fixed λ-bits number N , where
λ is the security parameter. A lot of additional work needs to be added to this
simple idea to protect against malicious errors, see the above citations for more
details. Overall, the verification process has the same number of steps than the
full homomorphic computation, but if λ is smaller than the actual data-types
of ciphertexts, the verification of the checksum may be faster that the entire
computation9.

9 This is just an intuition, but this does not apply to [21] or [15] FHE schemes, which
operate on small 32bits primitive types. Packing multiple 32-bits words together in
these systems does not correspond to low degree polynomial functions anymore.



Attacking FHE-based applications by software fault injections 17

Therefore, all this techniques could be used in a larger scenario, where multi-
ple users ask for small computations, fastly and constantly verified, as it happens
in “blockchain-type” scenarios.

References

1. J. Alperin-Sheriff and C. Peikert. Faster bootstrapping with polynomial error. In
Advances in Cryptology–CRYPTO 2014, pages 297–314. Springer, 2014.

2. J.-F. Biasse and L. Ruiz. Fhew with efficient multibit bootstrapping. In Interna-
tional Conference on Cryptology and Information Security in Latin America, pages
119–135. Springer, 2015.

3. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the rsa
encryption standard pkcs# 1. In Advances in Cryptology—CRYPTO’98, pages
1–12. Springer, 1998.

4. D. Boneh, E.-J. Goh, and K. Nissim. Evaluating 2-dnf formulas on ciphertexts. In
Theory of Cryptography Conference, pages 325–341. Springer, 2005.

5. Z. Brakerski. Fully homomorphic encryption without modulus switching from clas-
sical gapsvp. In Advances in Cryptology–CRYPTO 2012, pages 868–886. Springer,
2012.

6. Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) fully homomorphic
encryption without bootstrapping. In Proceedings of the 3rd Innovations in Theo-
retical Computer Science Conference, pages 309–325. ACM, 2012.

7. Z. Brakerski and V. Vaikuntanathan. Fully homomorphic encryption from ring-
lwe and security for key dependent messages. In Advances in Cryptology–CRYPTO
2011, pages 505–524. Springer, 2011.

8. Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) lwe. SIAM Journal on Computing, 43(2):831–871, 2014.

9. Z. Brakerski and V. Vaikuntanathan. Lattice-based fhe as secure as pke. In Pro-
ceedings of the 5th conference on Innovations in theoretical computer science, pages
1–12. ACM, 2014.

10. A. Canteaut, S. Carpov, C. Fontaine, T. Lepoint, M. Naya-Plasencia, P. Paillier,
and R. Sirdey. Stream ciphers: A practical solution for efficient homomorphic-
ciphertext compression. In Fast Software Encryption 2016. Springer Verlag, 2016.

11. D. Catalano and D. Fiore. Practical homomorphic macs for arithmetic circuits. In
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 336–352. Springer, 2013.

12. D. Catalano, D. Fiore, R. Gennaro, and L. Nizzardo. Generalizing homomorphic
macs for arithmetic circuits. In International Workshop on Public Key Cryptogra-
phy, pages 538–555. Springer, 2014.

13. D. Catalano, D. Fiore, and B. Warinschi. Homomorphic signatures with effi-
cient verification for polynomial functions. In International Cryptology Conference,
pages 371–389. Springer, 2014.

14. M. Chenal and Q. Tang. On key recovery attacks against existing somewhat ho-
momorphic encryption schemes. In Progress in Cryptology-LATINCRYPT 2014,
pages 239–258. Springer, 2014.

15. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. Faster fully homomorphic
encryption: Bootstrapping in less than 0.1 seconds. In Advances in Cryptology–
ASIACRYPT 2016: 22nd International Conference on the Theory and Application
of Cryptology and Information Security, Hanoi, Vietnam, December 4-8, 2016,
Proceedings, Part I, pages 3–33. Springer, 2016.



18 Ilaria Chillotti, Nicolas Gama, Louis Goubin

16. I. Chillotti, N. Gama, M. Georgieva, and M. Izabachène. A homomorphic lwe based
e-voting scheme. In International Workshop on Post-Quantum Cryptography, pages
245–265. Springer, 2016.

17. J.-S. Coron, T. Lepoint, and M. Tibouchi. Scale-invariant fully homomorphic
encryption over the integers. In Public-Key Cryptography–PKC 2014, pages 311–
328. Springer, 2014.

18. J.-S. Coron, A. Mandal, D. Naccache, and M. Tibouchi. Fully homomorphic en-
cryption over the integers with shorter public keys. In Advances in Cryptology–
CRYPTO 2011, pages 487–504. Springer, 2011.

19. J.-S. Coron, D. Naccache, and M. Tibouchi. Public key compression and modulus
switching for fully homomorphic encryption over the integers. In Advances in
Cryptology–EUROCRYPT 2012, pages 446–464. Springer, 2012.

20. A. Das, S. Dutta, and A. Adhikari. Indistinguishability against chosen ciphertext
verification attack revisited: The complete picture. In Provable Security, pages
104–120. Springer, 2013.

21. L. Ducas and D. Micciancio. Fhew: Bootstrapping homomorphic encryption in
less than a second. In Advances in Cryptology–EUROCRYPT 2015, pages 617–
640. Springer, 2015.

22. T. ElGamal. A public key cryptosystem and a signature scheme based on dis-
crete logarithms. In Workshop on the Theory and Application of Cryptographic
Techniques, pages 10–18. Springer, 1984.

23. D. Fiore, A. Mitrokotsa, L. Nizzardo, and E. Pagnin. Multi-key homomorphic au-
thenticators. In Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information Secu-
rity, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part II, pages 499–530.
Springer, 2016.

24. C. Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009.

25. C. Gentry. Computing arbitrary functions of encrypted data. Communications of
the ACM, 53(3):97–105, 2010.

26. C. Gentry et al. Fully homomorphic encryption using ideal lattices. In STOC,
volume 9, pages 169–178, 2009.

27. C. Gentry and S. Halevi. Fully homomorphic encryption without squashing using
depth-3 arithmetic circuits. In Foundations of Computer Science (FOCS), 2011
IEEE 52nd Annual Symposium on, pages 107–109. IEEE, 2011.

28. C. Gentry and S. Halevi. Implementing gentry’s fully-homomorphic encryption
scheme. In Advances in Cryptology–EUROCRYPT 2011, pages 129–148. Springer,
2011.

29. C. Gentry, S. Halevi, and N. P. Smart. Better bootstrapping in fully homomorphic
encryption. In Public Key Cryptography–PKC 2012, pages 1–16. Springer, 2012.

30. C. Gentry, S. Halevi, and N. P. Smart. Fully homomorphic encryption with poly-
log overhead. In Advances in Cryptology–EUROCRYPT 2012, pages 465–482.
Springer, 2012.

31. C. Gentry, S. Halevi, and N. P. Smart. Homomorphic evaluation of the aes circuit.
In Advances in Cryptology–CRYPTO 2012, pages 850–867. Springer, 2012.

32. C. Gentry, A. Sahai, and B. Waters. Homomorphic encryption from learning with
errors: Conceptually-simpler, asymptotically-faster, attribute-based. In Advances
in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

33. C. Hall, I. Goldberg, and B. Schneier. Reaction attacks against several public-key
cryptosystem. In Information and Communication Security, pages 2–12. Springer,
1999.



Attacking FHE-based applications by software fault injections 19

34. Z. Hu, F. Sun, and J. Jiang. Ciphertext verification security of symmetric encryp-
tion schemes. Science in China Series F: Information Sciences, 52(9):1617–1631,
2009.

35. D. Johnson, A. Menezes, and S. Vanstone. The elliptic curve digital signature
algorithm (ecdsa). International Journal of Information Security, 1(1):36–63, 2001.

36. D. W. Kravitz. Digital signature algorithm, July 27 1993. US Patent 5,231,668.
37. J. Loftus, A. May, N. P. Smart, and F. Vercauteren. On cca-secure somewhat ho-

momorphic encryption. In Selected Areas in Cryptography, pages 55–72. Springer,
2012.

38. M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can homomorphic encryption be
practical? In Proceedings of the 3rd ACM workshop on Cloud computing security
workshop, pages 113–124. ACM, 2011.

39. P. Paillier. Public-key cryptosystems based on composite degree residuosity classes.
In International Conference on the Theory and Applications of Cryptographic Tech-
niques, pages 223–238. Springer, 1999.

40. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms. Foundations of secure computation, 4(11):169–180, 1978.

41. R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures
and public-key cryptosystems. Communications of the ACM, 21(2):120–126, 1978.

42. N. P. Smart and F. Vercauteren. Fully homomorphic encryption with relatively
small key and ciphertext sizes. In Public Key Cryptography–PKC 2010, pages
420–443. Springer, 2010.

43. D. Stehlé and R. Steinfeld. Faster fully homomorphic encryption. In Advances in
Cryptology-ASIACRYPT 2010, pages 377–394. Springer, 2010.

44. M. Van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomorphic
encryption over the integers. In Advances in cryptology–EUROCRYPT 2010, pages
24–43. Springer, 2010.

45. S.-M. Yen and M. Joye. Checking before output may not be enough against fault-
based cryptanalysis. IEEE Transactions on computers, 49(9):967–970, 2000.

46. Z. Zhang, T. Plantard, and W. Susilo. Reaction attack on outsourced comput-
ing with fully homomorphic encryption schemes. In International Conference on
Information Security and Cryptology, pages 419–436. Springer, 2011.

47. Z. Zhang, T. Plantard, and W. Susilo. On the cca-1 security of somewhat homo-
morphic encryption over the integers. In International Conference on Information
Security Practice and Experience, pages 353–368. Springer, 2012.


	Attacking FHE-based applications by software fault injections

