
Protecting AES with Shamir’s Secret Sharing
Scheme?

Louis Goubin1 and Ange Martinelli1,2

1 Versailles Saint-Quentin-en-Yvelines University
Louis.Goubin@prism.uvsq.fr
2 Thales Communications

jean.martinelli@fr.thalesgroup.com

Abstract. Cryptographic algorithms embedded on physical devices are
particularly vulnerable to Side Channel Analysis (SCA). The most com-
mon countermeasure for block cipher implementations is masking, which
randomizes the variables to be protected by combining them with one
or several random values. In this paper, we propose an original masking
scheme based on Shamir’s Secret Sharing scheme [23] as an alternative
to Boolean masking. We detail its implementation for the AES using
the same tool than Rivain and Prouff in CHES 2010 [17]: multi-party
computation. We then conduct a security analysis of our scheme in or-
der to compare it to Boolean masking. Our results show that for a given
amount of noise the proposed scheme - implemented to the first order -
provides the same security level as 3rd up to 4th order boolean masking,
together with a better efficiency.

Keywords: Side Channel Analysis (SCA), Masking, AES Implementa-
tion, Shamir’s Secret Sharing, Multi-party computation.

1 Introduction

Side Channel Analysis is a cryptanalytic method in which an attacker analyzes
the side channel leakage (e.g. the power consumption, . . .) produced during the
execution of a cryptographic algorithm embedded on a physical device. SCA
exploits the fact that this leakage is statistically dependent on the intermediate
variables that are involved in the computation. Some of these variables are called
sensitive in that they are related to a secret data (e.g. the key) and a known
data (e.g. the plain text), and recovering information on them therefore enables
efficient key recovery attacks [12, 3, 9].
The most common countermeasure to protect implementations of block ciphers
against SCA is to use masking techniques [4, 10] to randomize the sensitive vari-
ables. The principle is to combine one or several random values, called masks,
with every processed sensitive variable. Masks and masked variables propagate

? Full version of the paper published in the proceedings of CHES 2011

throughout the cipher in such a way that any intermediate variable is indepen-
dent of any sensitive variable. This method ensures that the leakage at an instant
t is independent of any sensitive variable, thus rendering SCA difficult to per-
form. The masking can be improved by increasing the number of random masks
that are used per sensitive variable. A masking that involves d random masks is
called a dth-order masking and can always be theoretically broken by a (d+1)th-
order SCA, namely an SCA that targets d + 1 intermediate variables at the
same time [14, 22, 19]. However, the noise effects imply that the complexity of a
dth-order SCA increases exponentially with d in practice [4]. The dth-order SCA
resistance (for a given d) is thus a good security criterion for implementations
of block ciphers. In [18] Rivain and Prouff give a general method to implement
a dth-order masking scheme to the AES using secure Multi-Party Computation.
Instead of looking for perfect theoretical security against dth-order SCA as done
in [18], an alternative approach consists in looking for practical resistance to
these attacks. It may for instance be observed that the efficiency of higher-order
SCA is related to the way the masks are introduced to randomize sensitive vari-
ables. The most widely studied masking schemes are based on Boolean masking
where masks are introduced by exclusive-or (XOR). First order boolean masking
enables securing implementations against first-order SCA quite efficiently[1, 17].
It is however especially vulnerable to higher-order SCA [14] due to the intrinsic
physical properties of electronic devices. Other masking schemes may provide
better resistance against these attacks using various operations to randomize
sensitive variables. This approach will be further investigated in this paper.

Related work. In [26, 6], the authors propose to use an affine function instead
of just XOR to mask sensitive variables, thus improving the security of the
scheme for a low complexity overhead. However, this countermeasure is devel-
oped only to the 1th order and it is not clear how it can be extended to higher
orders. In [11, 17] the authors explain how to use secure Multi-Party Computa-
tion to process the cipher on shared variables. They use a sharing scheme based
on XOR, implementing boolean masking to any order to secure the AES block
cipher. At last, in [20], Prouff and Roche give a hardware oriented glitch free way
to implement block ciphers using Shamir’s Secret Sharing scheme and Ben-Or
et al. secure multi-party computation [2] protocol operating on 2d+ 1 shares to
thwart d-th order SCA.

Our contribution. In this paper, we propose to combine both approaches in im-
plementing a masking scheme based upon Shamir’s Secret Sharing scheme [23],
called SSS masking and processed using Multi-party Computation methods.
Namely, we present an implementation of the block cipher such that every 8-bit
intermediate result z ∈ GF(256) is manipulated under the form (xi, P (xi))i=0..d,
where xi ∈ GF(256)∗ is a random value generated before each new execution of
the algorithm and P (X) ∈ GF(256)[X] is a polynomial of degree d such that
P (0) = z. Our scheme maintains the same compatibility as Boolean masking
with the linear transformations of the algorithm. Moreover, the fact that the
masks are never processed alone prevents them to be targeted by a higher-order

SCA, thus greatly improves the resistance of the scheme to such attacks.

Organization of the paper. We fist recall the AES and Shamir’s secret shar-
ing scheme in Sect. 2. In Sect. 3, we show how SSS masking can be applied to
the AES and give some implementation results. Sect. 4 analyzes the resistance
of our method to high-order SCA and Sect. 5 concludes the paper.

2 Preliminaries

2.1 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is a block cipher that iterate 10
times a round transformation. Each of these involves four stages: AddRoundKey,
ShiftRows, MixColumn, and SubByte, that ensure the security of the scheme.

In this section, we recall the four main operations involved in the AES encryption
Algorithm. For each of them, we denote by s = (si,j)0≤i,j≤3 the state at the input
of the transformation, and by s′ = (s′i,j)0≤i,j≤3 the state at the output of the
transformation.

1. AddRoundKey: Let k = (ki,j)0≤i,j≤3 denote the round key. Each byte of the
state is XOR-ed with the corresponding round key byte:

(s′i,j)← (si,j)⊕ (ki,j).

2. SubBytes: each byte of the state passes through the 8-bit AES S-box S:

s′i,j ← S(si,j).

3. ShiftRows: each row of the state is cyclically shifted by a certain offset:

s′i,j ← si,j−i mod 4.

4. MixColumns: each column of the state is modified as follows:

(s′0,c, s
′
1,c, s

′
2,c, s

′
3,c)← MixColumnsc(s0,c, s1,c, s2,c, s3,c)

where MixColumnsc implements the following operations:
s′0,c ← (02 · s0,c)⊕ (03 · s1,c)⊕ s2,c ⊕ s3,c
s′1,c ← s0,c ⊕ (02 · s1,c)⊕ (03 · s2,c)⊕ s3,c
s′2,c ← s0,c ⊕ s1,c ⊕ (02 · s2,c)⊕ (03 · s3,c)
s′3,c ← (03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (02 · s3,c),

where · and ⊕ respectively denote the multiplication and the addition in the
field GF(2)[X]/p(X) with p(X) = X8 +X4 +X3 +X+ 1, and where 02 and

03 respectively denote the elements X and X + 1. In the following, we will
assume that MixColumnsc is implemented as

s′0,c ← xtimes(s0,c ⊕ s1,c)⊕ tmp ⊕ s0,c
s′1,c ← xtimes(s1,c ⊕ s2,c)⊕ tmp ⊕ s1,c
s′2,c ← xtimes(s2,c ⊕ s3,c)⊕ tmp ⊕ s2,c
s′3,c ← s′0,c ⊕ s′1,c ⊕ s′2,c ⊕ tmp,

where tmp = s0,c ⊕ s1,c ⊕ s2,c ⊕ s3,c and where the xtimes function is imple-
mented as a look-up table for the application x 7→ 02 · x.

2.2 Shamir’s Secret Sharing scheme

In some cryptographic context ones may need to share a secret between (at
least) d users without any k < d users being able to recover the secret alone.
In [23] Shamir exposes the problematic and gives a secret sharing scheme using
polynomial interpolation as a recovery mean. Namely, every user has a pair
(xi, P (xi))xi 6=0, where P is a polynomial of degree k, and the secret is given by
P (0). In this configuration, one needs at least k + 1 shares to recover P , then
P (0). We recall hereafter the sharing and reconstruction algorithms for a value of
k = d−1, operating on n-bits words. With these parameters, in order to share a
secret a0 into d shares, one needs to choose d−1 random numbers (ad−1, . . . , a1)
to construct the polynomial

P (x) = ad−1 · xd−1 + ad−2 · xd−2 + · · ·+ a1 · x+ a0.

Every share i is then given by (xi, yi) where yi = P (xi), and the xi’s are all
distinct and non-zero. Formally we have Algorithm 1.

Algorithm 1 Shamir’s Secret Sharing scheme

Input: A secret a0, random values (xi)i=0..d−1

Output: Shares (xi, yi)i=0..d−1

1. (ai)i=1..d−1 ← Rand(n)

2. for i = 0 to d do

3. yi ← ad−1 · xd−1
i + ad−2 · xd−2

i + · · ·+ a1 · xi + a0

4. return (xi, yi)i=0..d−1

The reconstruction step is directly derived from polynomial interpolation and
proceeds as follows:

a0 =

d∑
0

yi · βi (1)

where each βi is a precomputed value such that βi =

d∏
j=0,j 6=i

−xj
xi − xj

.

3 Higher order masking of AES

The AES block cipher iterates a round transform composed of four stages:
AddRoundKey, ShiftRows, MixColumn and SubByte. In this section we will show
how to securely mask the different layers at order d using SSS masking.

3.1 Masking Field Operations

In order to secure the AES there are five field operations that must be protected:
the addition with an unmasked constant, the addition with a masked variable,
the multiplication by a scalar, the square, and the multiplication between two
shared variables. Moreover, as the AES Sbox is the composition of the inversion
in GF(256) and an affine function modulus the polynomial X8 + 1, this affine
transform also has to be secured.

Let b be a sensitive variable shared as (xi, yi)i=0..d following Shamir’s secret
sharing scheme. Addition with an unmasked constant u can be directly computed
by XORing u to the second component of the shares, such as:

(x′i, y
′
i)← (xi, yi ⊕ u).

Let (xi, ui)i=0..d be the shared representation of a variable u. The shared repre-
sentation of the addition b⊕ u is obtained as:

(x′i, y
′
i)← (xi, yi ⊕ ui).

Similarly the multiplication by a scalar p is computed as:

(x′i, y
′
i)← (xi, yi · p).

While working in a field of characteristic 2 squaring is GF(256)-linear:

(x′i, y
′
i)← (x2i , y

2
i).

Remark 1. The coefficient x′i at the output of the squaring is not equal to the
coefficient xi. However others operations may need the use of constant xi. This
matter must be taken in account in the computation as shown in Algorithm 5.

The product of two variables protected by secret sharing cannot be solved with
the linear property of the transformation, as multiplying two polynomials with
the same degree gives a polynomial with degree double of the original polynomial.
Two different approaches can be studied. The first is to use the proven secure
multi-party computation scheme of [7, 2] operating on 2d + 1 shares to process
the product. However this approach has a very high complexity because we
have to process the whole algorithm using 2d+ 1 shares. A solution could be to
generate at the beginning of every field multiplication d pairs (xi, yi)i=d+1..2d+1

to process the multiplication. With this method we can use d+ 1 shares for all
the operations except the product, and 2d + 1 shares for it. Formally we give
Algorithm 2.

Algorithm 2 Share multiplication SecMult

Input: Shared representation of b, (xi, yi)i=0..d and u, (xi, wi)i=0..d

Output: Shares (xi, y
′
i)i=0..d representing the product of b and u

1. for i = d+ 1 to 2d do

2. yi ←
∑d

j=0 yj · βj(xi)

3. wi ←
∑d

j=0 wj · βj(xi)

4. for i = 0 to 2d do

5. zi ← yi · wi · β∗i
6. Share zi in (xj , zij = Pi(xj))j=0..d using Algo 1 with Pi of degree d

7. for i = 0 to d do

8. y′i = zii +

2d∑
j=0,j 6=i

zji

9. return (xi, y
′
i)i=0..d

where the βj(xi) are d(d+ 1) precomputed values such that

βj(xi) =

d∏
k=0,k 6=j

xi − xk
xj − xk

,

and β∗i are 2d+ 1 precomputed values such that

β∗i =

2d∏
j=0,j 6=i

−xj
xi − xj

.

This algorithm is secure according to the security proofs given in [2].
Indeed, the computation of the βj(xi) is independent of any secret and the yi
and wi for d+ 1 ≤ i ≤ 2d do not leak any more information than the yi and wi
for i ≤ d. The security of the remaining of the algorithm is directly derived from
the security of the secure multiparty computation scheme given in [2]. However,
as we will show in section 3.2 algorithm 2 has a very high complexity.

The second possibility is to exploit the context of side channel countermeasure
that allows us to compute values unknown in classical multi-party computation
in order to improve the complexity at the loss of the security proof. We give
Algorithm 3 to compute secure shared field multiplication.

Algorithm 3 Share multiplication SecMult

Input: Shared representation of b, (xi, yi)i=0..d and u, (xi, wi)i=0..d

Output: Shares (xi, y
′
i)i=0..d representing the product of b and u

1. for j = 0 to d do

2. for k = 0 to d do

3. zj,k ← yj · wk

4. for i = 0 to d do

5. (xi, y
′
i)←

xi,
 d∑

j=1

∑
0≤k<j

(zj,k ⊕ zk,j) · βj,k(xi)

+

d∑
j=0

zj,j · βj,j(xi)

6. return (xi, y

′
i)i=0..d

where the βj,k(xi) are precomputed values defined as follows.

Recall that βj(x) =

d∏
l=0,l 6=j

x− xl
xj − xl

. We have

βj(x) · βk(x) =

d∏
l=0,l 6=j

x− xl
xj − xl

·
d∏

m=0,m 6=k

x− xm
xk − xm

= α2dx
2d + · · ·+ αdx

d + · · ·+ α1x+ α0

(2)

We then define βj,k(x) = βk,j(x) = αdx
d + · · ·+ α1x+ α0.

Proposition 1. Algorithm 3 holds because the polynomial

P (x) =

d∑
j=0

d∑
k=0

yj · wk · βj,k(x) is such that:

degree(P) = d
P (0) = b · u
∀x ∈ {xi}i=0..d, P (xi) = y′i

Proof. – By construction of the βk,j(x), degree(P) = d.
– Let b, u be shared respectively in (xi, yi = R(xi)) and (xi, wi = Q(xi)).

R(x) =
∑d

0 yi · βi(x) and b = R(0) and Q(x) =
∑d

0 wi · βi(x) and u = Q(0).
As the truncation does not modify the constant term of the polynomial,

P (0) = R(0) ·Q(0) = b · u.

– At last, by construction ∀x ∈ {xi}i=0..d,

y′i =

d∑
j=0

d∑
k=0

yj · wk · βj,k(xi) = P (xi)

�

Intuitively, the security of the scheme against k-th order SCA (k ≤ d) is based
on the following points:

– according to polynomial interpolation, one needs at least d + 1 shares to
define a polynomial of degree d,

– the computation of the βj,k(xi) is independent of any secret,
– the knowledge of yj ·wk does not leak more information on b (resp. u) than

the knowledge of yj (resp. wk),

However the security proof of Algorithm 3 does not seems to be an easy matter
and is still an open work.

Finally the affine function A involved in the AES Sbox, as if non linear with
respect to the polynomial mask, can nevertheless be implemented using straight-
forwardly as : (x′i, y

′
i)← (xi, A(yi)). Indeed, if yi = P (xi), since A s affine A(P) is

a polynomial of degree d with A(P (0)) = A(b) and every A(yi) is the polynomial
value of A(P)(x) in xi.

3.2 Complexity of the operations

In order to evaluate the complexity overhead of SSS masking with respect to
boolean masking, we compare the complexity of each operation involved in the
AES computation for both kind of masking. As shown in the previous section, the
multiplication between two shared variables is the most consuming operation,
but this is also the case for boolean masking (see [17]). Table 1 resumes the
complexities of both schemes.

Operation \ Masking scheme Boolean [17] SSS (algo.2) SSS (algo.3)

XOR with a constant 1 XOR d+ 1 XORs d+ 1 XORs

Shared XOR d+ 1 XORs d+ 1 XORs d+ 1 XORs

Scalar Multiplication d+ 1 field products d+ 1 field products d+ 1 field products

Squaring d+ 1 squaring 2(d+ 1) squaring 2(d+ 1) squaring

Shared Field 2d(d+ 1) XORs d(2d2 + 7d+ 1) XORs d(d+ 1)(d+ 2) XORs

Multiplication d(d+ 1)/2 Rand d(2d+ 1) Rand 0 Rand

(d+ 1)2 field products d(2d2 + 5d+ 5) field products (d+ 1)2(2 + d
2
) field products

Sbox Affine 1 XOR d XORs d XORs

transformation d ring products d ring products d ring products
Table 1. Complexity of masked operations

3.3 Masking the full S-box

We have defined secure squaring and multiplication in Section 3.1, we then use
the exponentiation algorithm given in [17], and resumed afterward (Algo 4), to
implement the power function involved in the AES S-box.

Algorithm 4 Secure Exponentiation to the power 254 over GF(28)

Input: Shared representation of b, (xi, yi)i=0..d

Output: Shares (xi, y
′
i)i=0..d of the value b254

1. for i = 0 to d do(αi, ζi)← (x2i , y
2
i)

2. (xi, ζi)i ← RefreshMasks((αi, ζi)i, 2)

3. (xi, γi)i ← SecMult((xi, ζi), (xi, yi))

4. for i = 0 to d do(αi, δi)← (x4i , γ
4
i)

5. (xi, δi)i ← RefreshMasks((αi, δi)i, 4)

6. (xi, γi)i ← SecMult((xi, γi), (xi, δi))

7. for i = 0 to d do(αi, γi)← (x16i , γ
16
i)

8. (xi, γi)i ← RefreshMasks((αi, γi)i, 16)

9. (xi, γi)i ← SecMult((xi, γi), (xi, δi))

10. (xi, y
′
i)i ← SecMult((xi, γi), (xi, ζi))

11. return (xi, y
′
i)i=0..d

Here the RefreshMasks operation is needed to ensure the conservation of the
xi’s during the computation and the independence of the coefficients of the
polynomials before SecMult operation. Formally it follows Algorithm 5.

Algorithm 5 RefreshMasks

Input: Shared representation of b, (αi, yi)i=0..d, chosen (xi)i=0..d, t such that αi = x2
t

i

Output: Shared representation of b, (xi, y
′
i)i=0..d

1. for i = 0 to d do

2. β′i ← β2t

i

3. Share yi in (xj , zij) using Algo 1

4. for i = 0 to d do

5. (xi, y
′
i)←

(
xi,

d∑
j=0

β′j · zji

)
6. return (xi, y

′
i)i=0..d

Algorithm 5 consists in re-sharing each shares separately using a new random
polynomial, then to reconstruct the original shares to obtain d+ 1 shares corre-
sponding to this new polynomial. Eventually the complexity of Algorithm 4 is
resumed in Table 2. As a matter of comparison, we recall hereafter the complex-
ity of Boolean masking as given in [17].

As a matter of fact, the number of operations involved in SSS masking is larger
than that of boolean masking for a given order d, as the number of field mul-

Order XORs multiplications ˆ2j Random bytes RAM
SSS masking (algorithm 2)

order 1 58 72 18 18 18
order 2 256 265 27 58 40
order 3 660 648 36 120 70
order d 11d3 + 37d2 + 10d 11d3 + 29d2 + 29d+ 3 9(d+ 1) 11d2 + 7d 4d2 + 10d+ 4

SSS masking (algorithm 3)
order 1 36 54 14 6 20
order 2 150 165 21 18 33
order 3 384 372 28 36 48
order d 7d3 + 18d2 + 11d 5d3 + 18d2 + 22d+ 9 7(d+ 1) 3d2 + 3d d2 + 10d+ 9

Boolean masking [17]
order 1 20 16 6 6 7
order 2 56 36 9 16 12
order 3 108 64 12 20 18
order 4 176 100 15 48 25
order 5 260 144 18 70 33
order d 7d2 + 12d 4d2 + 8d+ 4 3(d+ 1) 2d2 + 4d 1

2
d2 + 7

2
d+ 3

Table 2. Complexity of inversion algorithms

tiplications and XOR operations are cubic in the order instead of quadratic for
boolean masking. We can ask ourselves if this observation remains true for a
given security level. This question will be studied in section 4.

3.4 Masking the whole AES

In the following, we describe how to mask an AES computation at the dth order
using SSS masking. We will assume that the secret key has been previously
masked and that its d+1 shares are provided as input to the algorithm (otherwise
a straightforward 1st-order attack would be possible). At the beginning of the
computation, the state s (holding the plaintext) is split into d+1 shares (x0, y0),
(x1, y1), . . . , (xd, yd) with respect to Shamir’s secret sharing scheme. In the next
sections, we describe how to perform the different AES transformations on the
state shares in order to guarantee the completeness as well as the dth-order
security.

Masking AddRoundKey The AddRoundKey stage at round r consists in XOR-
ing the rth round key kr to the state. The masked key schedule provides d + 1
shares (xi, kr,i)i for every round key kr. The XOR operation is then processed
as described in section 3.1: M(s⊕ kr)→ (xi, yi ⊕ kr,i)i=0..d

Masking ShiftRows As the ShiftRows layer operates on each byte separately
and does not change their value, we have: M(ShiftRows(s)) = ShiftRows(M(s))

Masking MixColumn Since each output byte of MixColumnsc can be expressed
as a linear function of the bytes of the input state over GF(256) we have:

MixColumnsc(M(s0),M(s1),M(s2),M(s3)) = (M(s′0),M(s′1),M(s′2),M(s′3)).

This suggests to perform the following steps to securely process MixColumnsc
on the masked representation of the state columns.

M(s′0) = (xi, y
′
0,i)← (xi, xtimes(y0,i ⊕ y1,i)⊕ tmpi ⊕ y0,i)

M(s′1) = (xi, y
′
1,i)← (xi, xtimes(y1,i ⊕ y2,i)⊕ tmpi ⊕ y1,i)

M(s′2) = (xi, y
′
2,i)← (xi, xtimes(y2,i ⊕ y3,i)⊕ tmpi ⊕ y2,i)

M(s′3) = (xi, y
′
2,i)← (xi, y

′
0,i ⊕ y′1,i ⊕ y′2,i ⊕ tmpi).

(3)

where tmpi = y0,i⊕y1,i⊕y2,i⊕y3,i and where xtimes denotes a look-up table for
the function x 7→ 02·x. The completeness holds because the single operation that
modify the random factors (ai)i=1..d is the xtimes one, and is applied similarly
to each share.

Masking SubByte The SubBytes transformation consists in applying the AES
S-box S to each byte of the state. In order to mask this transformation, we apply
the secure S-box computation described in Section 3.3 to the (d + 1)-tuple of
every byte shares of the state.

KeySchedule Finally, since the round key derivation is a composition of the
previous transformations, it can be protected using the exact same methods as
previously described.

Overall complexity In order to give an idea of the global complexity of the
scheme, and to compare it to the boolean masking, we give in Table 3 the
overall number of operations involved in the ciphering. The field multiplications
are implemented using log/alog tables as recalled in appendix A.

Masking scheme XORs/ANDs TLU Random bits RAM (bits) ROM (bits)
1O boolean 17640 16144 16896 312 6128
2O boolean 37800 32272 46080 352 6128
3O boolean 65640 54160 87552 400 6128

1O SSS (Algo 2) 58560 65824 27792 400 6128
1O SSS (Algo 3) 31760 37296 16240 400 6128

Table 3. Complexity of cipher implementations

4 Security analysis

In what follows, we shall consider that an intermediate variable Ui is associated
with a leakage variable Li representing the information leaking about Ui through
side channel. We will assume that the leakage can be expressed as a deterministic
leakage function ϕ of the intermediate variable Ui with an independent additive
noise Bi. Namely, we will assume that the leakage variable Li satisfies:

Li = ϕ(Ui) +Bi . (4)

In the following, we call dth-order leakage a tuple of d leakage variables Li cor-
responding to d different intermediate variables Ui that jointly depend on some
sensitive variable. As already argued in Sect. 3.4, when an implementation is
correctly protected by SSS masking, no first-order leakage of sensitive informa-
tion occurs. This directly comes from Shamir’s secret sharing scheme security.
In the following we will focus on higher orders attacks against protected imple-
mentations, secured by boolean or SSS masking.

4.1 Information Theoretic Analysis

In order to evaluate the information leaked by 1O-SSS masking and to compare
it to that of various orders Boolean masking, we compute, as suggested in [24],
the theoretical mutual information I(S|Ld) for a class discrete variable S of
the secret, and a d-order leakage Ld, with respect to increasing noise standard
deviation σ. Namely we consider the three following leakages:

– 2nd-order leakage of 1O-Boolean masking with targeted variables (Z⊕m1,m1)
– 3rd-order leakage of 2O-Boolean masking with targeted variables (Z⊕m1⊕
m2,m1,m2)

– 2nd-order leakage of 1O-SSS masking with targeted variables ((x1, a · x1 ⊕
Z), (x2, a · x2 ⊕ Z))

The variables Z, m1, m2 and a are assumed uniformly distributed over GF(256)
and mutually independent, and x1, x2 are assumed uniformly distributed over
GF(256)∗ with x1 6= x2. For each kind of leakage, we compute the mutual in-
formation between Z and the tuple of leakages in the Hamming weight (HW)
model with Gaussian noise: the leakage Li related to a variable Ui is distributed
according to equation (4) with ϕ = HW and Bi ∼ N (0, σ2) (the different Bi’s
are also assumed independent). In this context, the signal-to-noise ratio (SNR)
of the leakage is defined as Var [ϕ(Ui)] /Var [Bi] = 2/σ2.

Fig. 1 shows the mutual information values obtained for each kind of leakage with
respect to an increasing noise standard deviation. These results demonstrate the
information leakage reduction implied by the use of SSS masking. As expected,
SSS masking leaks less information than first and second order Boolean masking
for the considered Signal to Noise ratios (SNRs). We will now see to which extent
this reduction also applies to the efficiency of SCA on SSS masking.

4.2 Higher-Order DPA Evaluation

Let us assume that Z depends on the plaintext and of a subkey k?, and let
us denote by Z(k) the hypothetic value of Z for a guess k on k?. In a higher-
order DPA (HO-DPA) [14, 19], the attacker tests the guess k by estimating the
correlation coefficient ρ [ϕ̂(Z(k)), C(L)], where C is a combining function that
converts the multivariate leakage L into a univariate signal and where ϕ̂ is a

Fig. 1. Mutual Information values with respect to σ2 (logarithmic scale).

prediction function chosen such that ϕ̂(Z) is correlated as much as possible
to C(L). The guess k leading to the greatest correlation (in absolute value) is
selected as key-candidate. In [13], the authors show that the number of traces
required to mount a successful DPA attack is roughly quadratic in ρ−1 where
ρ is the correlation coefficient ρ [ϕ̂(Z), C(L)] (that is the expected correlation
for the correct key guess). The latter can therefore be used as a metric for the
efficiency of a (HO-)DPA attack.

The analysis conducted in [19] states that a good choice for C is the normalized
product combining:

C : L 7→
∏
i

(Li − E [Li]). (5)

Although the effectiveness of the normalized product combining has been only
studied in [19] in the context of Boolean masking, we can argue that this
combining function stays a natural choice against any kind of masking since
ρ [ϕ̂(Z(k)), C(L)] is related to the multivariate correlation3 between ϕ̂(Z(k))
and every coordinate of L [25]. Besides, in the presence of (even little) noise
in the side-channel leakage, the HO-DPA with normalized product combining is
nowadays the most efficient unprofiled attack against Boolean masking in the
literature (see for instance [19, 25, 18]).

3 What we call multivariate correlation here is the straightforward generalization of
the correlation coefficient to more than two variables (see [25]).

From Corollary 8 in [19], the optimal correlation ρSSS for the correct key hy-
pothesis can be obtained as:

ρSSS =

√
Var

[
E
[
L1 × L2|Z = z

]]
Var

[
L1 × L2

] (6)

Formally, when the leakage satisfies (4) with ϕ = HW and Bi ∼ N (0, σ2) , the
coefficient ρSSS obtained for the 2-nd order leakage of 1-st order SSS masking
satisfies:

ρSSS =

√
n3 · (2n+1 − 4n − 1)

α2 · σ4 + α1 · σ2 + α0
, (7)

where n is the bit-size of Z, and

α2 = 192 · 2n − 24n+4 − 64− 208 · 4n + 96 · 8n
α1 = (40 · 8n − 64 · 4n − 8 · 16n + 32 · 2n)n2

+(88 · 8n + 128 · 2n − 24n+4 − 168 · 4n − 32)n
α0 = (8n − 3 · 4n + 6 · 2n − 4)n4 + (−4 · 16n + 14 · 8n − 16 · 4n + 2 · 2n + 4)n3

+(23 · 8n − 4 · 16n − 44 · 4n + 34 · 2n − 8)n2 + (10 · 4n − 3 · 8n − 9 · 2n + 2)n
(8)

Remark 2. In order to endorse our choice of targeted variables, we also computed
the correlation coefficient corresponding to another 2rd-order leakage of SSS
masking targeting the pair (a, a ·x+Z) with the corresponding pair of prediction
functions: the Dirac function δ0 (δ0(x) = 0⇔ x 6= 0) and the Hamming weight.
We observed for several values of n and σ that the correlation coefficient was
always lower than ρSSS.

Regarding Boolean masking, it has been shown in [21] that the correlation ρbool
corresponding to HO-DPA with normalized product combining against dth-order
Boolean masking satisfies (in the Hamming weight model):

ρbool = (−1)d
√
n

(n+ 4σ2)
d+1
2

. (9)

From (7) and (9), we define the ratio ν as: ν = ρSSS
ρbool

.

Let us denote by NSSS (resp. Nbool) the number of leakage measurements for a
successful attack on SSS masking (resp. Boolean masking). According to [13],
NSSS and Nbool are roughly quadratic in the values of the correlation values.
Hence the ratio NSSS

Nbool
satisfies:

NSSS

Nbool
≈ 1

ν2
. (10)

Table 4 illustrate this relation giving the value 1/ν2 for different values of SNRs.
Values greater (resp. lower) than 1 indicate that SSS masking is more (resp. less)
secure than the considered attack.

Table 4. Ratio 1/ν2 for several Boolean masking orders with respect to 1O-order SSS
masking.

Attack \ SNR +∞ 1 1/2 1/5 1/10
3O-DPA on 2O Boolean Masking 4544.83 899.99 374.33 94.17 22.70
4O-DPA on 3O Boolean Masking 568.10 56.25 15.60 1.96 0.21
5O-DPA on 4O Boolean Masking 71.01 3.52 0.65 0.04 0.002

Due to (10), SSS masking is more secure than dth-order Boolean masking if
and only if |ν| ≤ 1. Comparing the resistance of the Boolean masking and SSS
masking against HO-DPA thus amounts to study when |ν| ≤ 1 is satisfied. We
can note that |ν| is an increasing function of σ and a decreasing function of
n. Let us denote by ϑ the maximal variance of the noise such that |ν| ≤ 1 is
satisfied. For the first values of d, we have:

ϑ =

+∞ if d = 1,

282.2683 if d = 2,
13.2072 if d = 3,
3.4036 if d = 4.

(11)

Eventually Fig. 2 sums up our main theoretical results. In particular, it illustrates
the fact that the coefficient ρSSS is lower than ρbool (computed for d = 3) only
when the noise variance σ2 is lower than 13.2072.

Fig. 2. Correlation values with respect to σ2 (logarithmic scale).

4.3 Attack simulations

In order to confront our theoretical analyses to practical evaluation, we per-
formed several attacks simulations. We then applied several side-channel distin-
guishers to leakage measurements simulated in the Hamming weight model with
Gaussian noise. The leakage measurements have been simulated as samples of
the random variables Li defined according to equation (4) with ϕ = HW and
Bi ∼ N (0, σ2) (the different Bi’s are also assumed independent). For all the
attacks, the sensitive variable Z was chosen to be an AES S-box output of the
form S(M ⊕ k?) where M represents a varying plaintext byte and k? represents
the key byte to recover.

Side-channel distinguishers. We applied two kind of side-channel distinguish-
ers: higher-order DPA such as described in Sect. 4.2 and higher-order MIA. In a
HO-MIA [16, 8], the distinguisher is the mutual information: the guess k is tested
by estimating I(ϕ̂(Z(k));L). As mutual information is a multivariate operator,
this approach does not involve a combining function.

Targeted variables. Each attack was applied against the leakages of SSS mask-
ing, and Boolean masking. The target variables are those listed in Sect. 4.1 for
Z being S(X ⊕ k?).
Prediction functions. For each DPA, we choose ϕ̂ to be the optimal prediction
function :

ϕ̂ : z 7→ E [C(L)|Z = z] . (12)

This leads us to select the Hamming weight function in the attacks against both
SSS and Boolean masking of any order.

For the MIA attacks, we choose ϕ̂ such that it maximizes the mutual information
I(ϕ̂(Z(k));L) for k = k? while ensuring that the mutual information is lower for
k 6= k?. In our case, every HO-MIA against both SSS and Boolean masking is
performed with ϕ̂ = HW since the distribution of (HW(Z⊕m0),HW(m0)) (resp.
(HW(Z ⊕ a0 · x0, x0),HW(Z ⊕ a0 · x1, x1))) only depends on HW(Z). Therefore

I
(
Z; (HW(Z ⊕m0),HW(m0))

)
= I
(
HW(Z); (HW(Z ⊕m0),HW(m0))

)
.

Note that the same relation holds at every masking order.

Pdf estimation method. For the (HO-)MIA attacks, we use the histogram
estimation method with rule of [9] for the bin-widths selection.

Attack simulation results. Each attack simulation is performed 100 times for
various SNR values (+∞, 1, 1/2, 1/5 and 1/10). Table 5 summarizes the number
of leakage measurements required to observe a success rate of 90% in retrieving k?

for the different attacks.These results shows the security improvement provided
by SSS masking with respect to boolean masking. This gain of security can be
explained by the fact that an attacker does not have direct access to the mask
a1 · xi, hence the relation between the key and the targeted variables is much
more noisy than for boolean masking.

Table 5. Number of leakage measurements for a 90% success rate.

Attack \ SNR +∞ 1 1/2 1/5 1/10

Attacks against Boolean Masking

2O-DPA on 1O Boolean Masking 150 500 1500 6000 20 000

2O-MIA on 1O Boolean Masking 100 5000 15 000 50 000 160 000

3O-DPA on 2O Boolean Masking 1500 9000 35 000 280 000 > 106

3O-MIA on 2O Boolean Masking 160 160 000 650 000 > 106 > 106

Attacks against SSS Masking

2O-DPA on 1O SSS Masking > 106 > 106 > 106 > 106 > 106

2O-MIA on 1O SSS Masking 500 000 > 106 > 106 > 106 > 106

3O-DPA on 2O SSS Masking > 106 > 106 > 106 > 106 > 106

3O-MIA on 2O SSS Masking > 106 > 106 > 106 > 106 > 106

5 Conclusion

In this paper we propose a new alternative to boolean masking to secure imple-
mentations of AES against side channel attacks using Shamir’s Secret Sharing
scheme to share sensitive variables. We give implementation results and con-
duct a security analysis that clearly show that our scheme can provide a good
complexity-security trade-off compared to boolean masking. In particular, on
smart card implementation, where SNR value is around 1/2, 1O SSS masking
provides both a better security and complexity than 3O boolean masking. On
hardware implementations where the noise can be drastically reduced, 1O SSS
masking is to be compared to 4th order boolean masking, which increase the ad-
vantage of SSS masking. Table 6 resume the complexit of the inversion algorithm
in these scnarii.

Masking scheme XOR multiplications ˆ2j Random bytes RAM
O1-SSS (Algo. 2) 58 72 18 18 18
O1-SSS (Algo. 3) 36 54 14 6 20
O3-boolean (σ = 2) 108 64 12 20 18
O4-boolean (σ ≈ 0) 176 100 15 48 25

Table 6. Complexity of inversion algorithms for similar security levels

These results show that the opening to secret sharing and secure multi-party
computation can provide a good alternative to boolean masking. This may be
an interesting way to thwart HO-SCA. It is an open research topic to try the
security and complexity of such a masking using other kinds of secret sharing
scheme.

References

1. Mehdi-Laurent Akkar and C. Giraud. An Implementation of DES and AES, Secure
against Some Attacks. In Ç.K. Koç, D. Naccache, and C. Paar, editors, Crypto-
graphic Hardware and Embedded Systems – CHES 2001, volume 2162 of Lecture
Notes in Computer Science, pages 309–318. Springer, 2001.

2. Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems
for non-cryptographic fault-tolerant distributed computation (extended abstract).
In STOC, pages 1–10. ACM, 1988.

3. É. Brier, C. Clavier, and F. Olivier. Correlation Power Analysis with a Leakage
Model. In M. Joye and J.-J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems – CHES 2004, volume 3156 of Lecture Notes in Computer Science,
pages 16–29. Springer, 2004.

4. S. Chari, C.S. Jutla, J.R. Rao, and P. Rohatgi. Towards Sound Approaches to
Counteract Power-Analysis Attacks. In Wiener [27], pages 398–412.

5. Christophe Clavier and Kris Gaj, editors. Cryptographic Hardware and Embed-
ded Systems – CHES 2009, volume 5747 of Lecture Notes in Computer Science.
Springer, 2009.

6. Guillaume Fumaroli, Ange Martinelli, Emmanuel Prouff, and Matthieu Rivain.
Affine masking against higher-order side channel analysis. In Selected Areas in
Cryptography, volume 6544 of Lecture Notes in Computer Science. Springer, 2010.

7. Rosario Gennaro, Michael O. Rabin, and Tal Rabin. Simplified vss and fact-track
multiparty computations with applications to threshold cryptography. In PODC,
pages 101–111, 1998.

8. Benedikt Gierlichs, Lejla Batina, Bart Preneel, and Ingrid Verbauwhede. Revisiting
Higher-Order DPA Attacks: Multivariate Mutual Information Analysis. Cryptol-
ogy ePrint Archive, Report 2009/228, 2009. http://eprint.iacr.org/.

9. Benedikt Gierlichs, Lejla Batina, Pim Tuyls, and Bart Preneel. Mutual Informa-
tion Analysis. In Elisabeth Oswald and Pankaj Rohatgi, editors, Cryptographic
Hardware and Embedded Systems – CHES 2008, volume 5154 of Lecture Notes in
Computer Science, pages 426–442. Springer, 2008.

10. L. Goubin and J. Patarin. DES and Differential Power Analysis – The Duplication
Method. In Ç.K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES ’99, volume 1717 of Lecture Notes in Computer Science, pages
158–172. Springer, 1999.

11. Yuval Ishai, Amit Sahai, and David Wagner. Private Circuits: Securing Hardware
against Probing Attacks. In D. Boneh, editor, Advances in Cryptology – CRYPTO
2003, volume 2729 of Lecture Notes in Computer Science, pages 463–481. Springer,
2003.

12. P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Wiener [27], pages
388–397.

13. Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks –
Revealing the Secrets of Smartcards. Springer, 2007.

14. T.S. Messerges. Using Second-order Power Analysis to Attack DPA Resistant
Software. In Ç.K. Koç and C. Paar, editors, Cryptographic Hardware and Embedded
Systems – CHES 2000, volume 1965 of Lecture Notes in Computer Science, pages
238–251. Springer, 2000.

15. D. Pointcheval, editor. Topics in Cryptology – CT-RSA 2006, volume 3860 of
Lecture Notes in Computer Science. Springer, 2006.

16. Emmanuel Prouff and Matthieu Rivain. Theoretical and Practical Aspects of
Mutual Information Based Side Channel Analysis. In Michel Abdalla, David

Pointcheval, Pierre-Alain Fouque, and Damien Vergnaud, editors, Applied Cryp-
tography and Network Security – ANCS 2009, volume 5536 of Lecture Notes in
Computer Science, pages 499–518. Springer, 2009.

17. Emmanuel Prouff and Matthieu Rivain. Provably Secure Higher-Order Masking
of AES. In Stefan Mangard and Franois-Xavier Standaert, editors, Cryptographic
Hardware and Embedded Systems – CHES 2010, volume 6225 of Lecture Notes in
Computer Science, pages 413–427. Springer, 2010.

18. Emmanuel Prouff and Matthieu Rivain. Theoretical and Practical Aspects of
Mutual Information Based Side Channel Analysis (Extended Version). To appear
in the Int. Journal of Applied Cryptography (IJACT), 2010.

19. Emmanuel Prouff, Matthieu Rivain, and Régis Bévan. Statistical Analysis of Sec-
ond Order Differential Power Analysis. IEEE Trans. Comput., 58(6):799–811, 2009.

20. Emmanuel Prouff and Thomas Roche. Higher-order glitches free implementation
of the aes using secure multi-party computation protocols. In Cryptographic Hard-
ware and Embedded Systems – CHES 2011, Lecture Notes in Computer Science.
Springer.

21. Matthieu Rivain, Emmanuel Prouff, and Julien Doget. Higher-Order Masking and
Shuffling for Software Implementations of Block Ciphers. In Clavier and Gaj [5],
pages 171–188.

22. Kai Schramm and Christof Paar. Higher Order Masking of the AES. In Pointcheval
[15], pages 208–225.

23. Adi Shamir. How to Share a Secret. Communications of the ACM, 22(11):612–613,
November 1979.

24. François-Xavier Standaert, Tal Malkin, and Moti Yung. A Unified Framework
for the Analysis of Side-Channel Key Recovery Attacks. In Antoine Joux, editor,
Advances in Cryptology – EUROCRYPT 2009, volume 5479 of Lecture Notes in
Computer Science, pages 443–461. Springer, 2009.

25. Francois-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth Oswald, Benedikt
Gierlichs, Marcel Medwed, Markus Kasper, and Stefan Mangard. The world is not
enough: Another look on second-order dpa. Cryptology ePrint Archive, Report
2010/180, 2010. http://eprint.iacr.org/.

26. Manfred von Willich. A technique with an information-theoretic basis for protect-
ing secret data from differential power attacks. In IMA int. Conf., volume 2260 of
Lecture Notes in Computer Science, pages 44–62. Springer, 2001.

27. M.J. Wiener, editor. Advances in Cryptology – CRYPTO ’99, volume 1666 of
Lecture Notes in Computer Science. Springer, 1999.

A Computing the product in GF(256)

The SSS masking and the processing of the AES involves multiplications in
the field GF(28). In software applications, the most efficient way to implement
the product in the field GF(256) is to use precomputed log/alog tables. The
construction of these tables is based on the fact that all non-zero elements in a
finite field GF(2n) can be obtained by exponentiation of a generator in this field.

Let α be a generator of GF(256)∗. We define

log(αi) = i

and
alog(i) = αi.

These results are stored in two tables of 2n − 1 words of n bits.

If a, b are non-zero, then the product a · b can be computed using log/alog tables
as

a · b = alog[(log(a) + log(b)) mod (2n − 1)]. (13)

In order to compute the addition modulo 2n − 1, let a, b ∈ GF(2n), and let
c denote the carry associated with the operation a + b mod (2n). Then, a +
b mod (2n − 1) can be computed from a+ b mod (2n) and c as follows.

Algorithm 6

Input: a, b ∈ GF(2n)

Output: s = a+ b mod (2n − 1)

1. s← a+ b mod 2n

2. s← s+ c mod 2n

3. if s = 2n − 1 then s = 0

4. Return s

Similarly the inversion of a non-zero element a ∈ GF(2n) can be implemented
using log/alog tables as

a−1 = alog[− log(a) mod (2n − 1)]. (14)

