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Abstract. Finding efficient countermeasures for cryptosystems against
fault attacks is challenged by a constant discovery of flaws in designs.
Even elements, such as public keys, that do not seem critical must be
protected. From the attacks against RSA [5,4], we develop a new attack
of DLP-based cryptosystems, built in addition on a lattice analysis [26]
to recover DSA public keys from partially known nonces. Based on a real-
istic fault model, our attack only requires 16 faulty signatures to recover
a 160-bit DSA secret key within a few minutes on a standard PC. These
results significantly improves the previous public element fault attack in
the context of DLP-based cryptosystems [22].
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1 Introduction

Since the advent of side channel attacks, classical cryptanalysis is no longer
sufficient to ensure the security of cryptographic algorithms. In practice, the im-
plementation of algorithms on electronic devices is a potential source of leakage
that an attacker can use to completely break a system [23,14,18]. The injection
of faults during the execution of cryptographic algorithm is considered as an in-
trusive side channel method because secret information may leak from malicious
modifications of the device’s behavior [10,11,7]. In this context, the security of
public key cryptosystems [10,11] and symmetric ciphers in both block [7] and
stream modes [20] has been challenged.

Recently, some interesting results have been obtained by attacking public key
cryptosystems. More precisely, several papers demonstrated that the perturba-
tion of public elements may induce critical flaws in implementations of public
key cryptosystems [6,13,22]. Whereas very efficient fault attacks against public
elements were elaborated for ECDLP (Elliptic Curve Discrete Logarithm Prob-
lem) [6] and IFP (Integer Factorisation Problem)-based algorithms [13,4], DLP
(Discrete Logarithm Problem)-based algorithms seem to be less vulnerable: the
best known attack against public elements of DLP-based algorithms requires



an average of 4 · 107 and 3 · 106 faulty signatures to recover the secret key for
respectively a 160-bit DSA [27] and a 1024-bit ElGamal [17]. This amount of
faults is a serious drawback to ensure the practicability of this attack [22].

In this paper, we propose a new fault attack against public key elements of
DLP-based cryptosystems. It is based on both lattice analysis proposed by P.Q.
Nguyen and I.E. Shparlinski [26] to recover DSA public keys from known part of
nonces and fault attacks against RSA public keys [5,4]. Under a practical fault
model, our presented attack only requires 16 faulty signatures to recover a 160-
bit DSA secret key within a few minutes on a standard PC. Hence, this attack
significantly improves previous results about perturbation of public elements in
the context of DLP-based cryptosystems [22]. Moreover, this performance pro-
vides evidence that DLP-based cryptosystems are not more resistant against
perturbation of public elements.

The remainder of this paper is organized as follows: Section 2 introduces
the notations used throughout the paper for the DSA signature scheme [27]
and the different implementations of the exponentiation. Section 3 describes our
fault attack against the DSA public modulus for ”Left-To-Right”-based expo-
nentiations but the attack also works when dual implementations are used. The
detailed evaluation of the performance of our new fault attack is provided in
Section 4. Finally we conclude in Section 5 about the need for protecting public
key elements from faults.

2 Background

2.1 Presentation of the DSA

The Digital Signature Algorithm, or DSA, is the American federal standard for
digital signatures [27]. The system parameters are composed by {p, q, h, g} where
p stands for a large prime modulus of size n, q is a l-bit prime such that q | p−1,
h is a hash function and g ∈ Z∗p is a generator of order q. The private key is an
integer x ∈ Z∗q and the public key is y ≡ gx mod p. The security of DSA relies
on the hardness of the discrete logarithm problem in prime finite fields and its
subgroups.

Signature. To sign a messagem, the signer picks a random k < q and computes:

u←
(
gk mod p

)
mod q and v ← h(m) + xu

k
mod q.

The signature of m is the pair: (u, v).

Verification. To check (u, v), the verifier ascertains that:

u
?≡
(
gwh(m)ywu mod p

)
mod q, where w ≡ v−1 mod q.



2.2 Modular exponentiation algorithms

Binary exponentiation algorithms are often used for computing the DSA sig-
natures (see Sect. 2.1). Their polynomial complexity with respect to the input
length makes them very interesting to perform modular exponentiations.

The Algorithm 1 describes a way to compute modular exponentiations by
scanning bits of d from least significant bits (LSB) to most significant bits
(MSB). That is why it is usually referred to as the ”Right-To-Left” modular
exponentiation algorithm.

The dual algorithm that implements the binary modular exponentiation is
the ”Left-To-Right” exponentiation described in Algorithm 2. This algorithm
scans bits of the exponent from MSB to LSB and is lighter than ”Right-To-Left”
one in terms of memory consumption.

Algorithm 1: ”Right-To-Left” modular
exponentiation

Algorithm 2: ”Left-To-Right” modular
exponentiation

INPUT: g, k =
∑n−1

i=0 2i · ki, p INPUT: g, k =
∑n−1

i=0 2i · ki, p

OUTPUT: A ≡ gk mod p OUTPUT: A ≡ gk mod p
1 : A:=1; 1 : A:=1;
2 : B:=g; 2 : for i from (n− 1) downto 0
3 : for i from 0 upto (n− 1) 3 : A := A2 mod p;
4 : if (ki == 1) 4 : if (ki == 1)
5 : A := (A ·B) mod p; 5 : A := (A · g) mod p;
6 : end if 6 : end if
7 : B := B2 mod p; 7 : end for
8 : end for 8 : return A;
9 : return A;

3 Fault Attack Against DSA signature Scheme

3.1 Fault Model

Description of the model. The model we have chosen to perform the attack
is inspired by the previously used by A. Berzati et al. to successfully attack both
”Right-To-Left” [5] and ”Left-To-Right” [4] based implementation of standard
RSA. We suppose that the attacker is able to inject a transient fault that modifies
the public parameter p during the computation of u (see Sect. 2.1). The fault
is supposed to affect randomly on byte of p such that the value of the faulty
modulus p̂ is not known by the attacker, namely:

p̂ = p⊕ ε (1)

where ε = R8 · 2i, i ∈ [[0; n
8 − 1]] and R8 is a non-zero random byte value. For the

sake of clarity, we assume that the exponentiation algorithm used to implement



the first part of the signature (i.e. the computation of u) is the ”Left-To-Right”
algorithm (see Sect. 2.2). The attacks also applies for ”Right-To-Left” based
implementations of the DSA signature scheme.

Discussion. This fault model has been chosen for its simplicity and practicabil-
ity in smart card context, leading to successful applications [19,8,4]. Furthermore,
it can be easily adapted to 16-bit or 32-bit architectures.
A large number of fault model have been described in the literature. Most of
them are listed and discussed in [9,30]. Hence from these references, the fault
model used in [2] seems to be more restrictive than the one used in our analysis
since D. Naccache et al. consider an attacker that is able to set some bytes of
k to a known value (i.e. some bytes of k are set to 0). On the contrary, our
fault model seems to be stronger than Kim et al.’s one [22]. But, although their
fault model is easier to practice, the significant number of fault required by the
analysis represents a serious drawback. As a consequence, compared to previous
work, our new fault attack is a good trade-off between practicability of the fault
model and efficiency of the analysis.

3.2 Faulty Execution

This section details a faulty execution of the ”Left-To-Right” modular exponen-
tiation. We suppose that the fault occurs t steps before the end of the exponen-
tiation. Let k =

∑l−1
i=0 2i ·ki be the binary representation of k and A the internal

register value before the modification of p:

A ≡ g
∑l−1

i=t 2i−t·ki mod p (2)

If the first perturbed operation is a square, then the faulty first part of the
signature û can be written:

û ≡
((((

A2 · gkt−1
)2 · gkt−2

)2

. . .

)
gk0 mod p̂

)
mod q

≡
(
A2t

· g
∑t−1

i=0 2i·ki mod p̂
)

mod q (3)

Obviously, the other part of the signature v is also infected by the fault:

v̂ ≡ h(m) + xû

k
mod q (4)

One can notice from (3) that the perturbation has isolated the t least significant
bits of k. The adaptation of the method described in [4] allows an attacker to
recover this part of k.

3.3 Extraction of a part of k

The differential fault analysis against the ”Left-To-Right” implementation of
the RSA signature, described in [4], takes advantage of the difference between



a correct and a faulty RSA signature to recover a part of the private exponent.
This method can not be applied as itself to analyze the DSA faulty signature
since k is a nonce. But, by using the properties involved in the DSA signature
verification (see Sect. 2.1), the sole knowledge of the faulty DSA signature (û, v̂)
and the input message m may be sufficient to recover the least significant part
of the nonce k.

Getting a correct u. The correct signature part u can be obtained by using
the trick of the DSA signature verification. Indeed, if v̂ is invertible in Z∗q , let
ŵ ≡ v̂−1 mod q: (

gŵh(m) · hŵû
)

mod p ≡ gŵ(h(m)+xû) mod p

≡ gk mod p

≡ u (5)

The advantage of this method is that it requires only the knowledge of an input
message and the corresponding faulty signature (û, v̂). The only condition to
satisfy is that gcd(v̂, q) = 1 which is always the case since q is prime and v̂ <
q. Then, the attacker can compare û and u for guessing and determining the
searched part of k by applying the analysis provided in [4]. Its application to the
DSA is detailed below.

Guess-and-determine the part of k. The attacker aims to recover the least
significant part of k isolated by the fault injection kt =

∑t−1
i=0 2i · ki (see also

Sect. 3.2). Since the attacker knows that the fault occurs t steps before the end
of the exponentiation and that it has randomly modified one unknown byte of
p, the attacker tries to guess both kt and p̂. Namely, the attacker chooses a pair
of candidates (k′t, p

′) and first computes:

R(k′t)
≡ u · g−k′t mod p (6)

For the sake of clarity, let us rewrite u obtained with the ”Left-To-Right” algo-
rithm:

u ≡ gk mod p

≡
(
A2t

· gkt

)
mod p (7)

By observing (6) and (7) one can notice that when k′t = kt, R(k′t)
≡ A2t

mod p.
So, R(k′t)

is expected to be a t-th quadratic residue in Z∗p. Hence, if R(k′t)
is not

a quadratic residue, the attacker can directly discard k′t. This condition is not
sufficient but allows to reduce the number of computations. Since p is prime, the
attacker can perform the quadratic residuosity test based on Fermat’s Theorem.
Hence, R(k′t)

is a quadratic residue if(
R(k′t)

) p−1
2 ≡ 1 mod p (8)



In this case, the attacker can compute the square roots of R(k′t)
using the Tonelli

and Shanks algorithm [15]. This step has to be repeated until the quadratic
residuosity test fails and at most t times since R(k′t)

is expected to be a t-th
quadratic residue. At first sight, one may think that computing t-th quadratic
residues of R(k′t)

may return 2t possible values. In fact, this is not the case since
a number randomly chosen in a cyclic group has 2min(s,t) t-th quadratic residues,
where s is the bigger power of 2 that divides p−1. In the general case, the power
s is lower or equal to 4. The purpose of this step is to obtain a candidate value
for the internal register Ak′t

when the fault was injected.
The next step consists in simulating a faulty end of execution from the chosen

candidate pair (k′t, p
′) and the previously obtained Ak′t

. Hence, the attacker
computes:

u′(k′t,p′) ≡
(
A2t

k′t
· gkt mod p′

)
mod q (9)

Finally, to validate his guess for k′t and p′, the attacker checks if the following
condition is satisfied:

u′(k′t,p′) ≡ û mod q (10)

According to [5,4], the satisfaction of (10) implies that the candidate pair (k′t, p
′)

is very probably the right one (see App. A) and so, the attacker directly deduces
the t-bit least significant part of k.

One can notice that the quadratic residuosity tests discards a majority of k′t
candidates before guessing p′. Hence, the pair of candidate values is not simul-
taneously, but quite sequentially, searched. So, the practical complexity of this
step is smaller than the theoretical one (see Sect. 4).

The main advantage of this analysis compared to the one about the ”Left-
To-Right” implementation of RSA is that p̂ has not to be prime for allowing the
the attacker to compute square roots. So, only one faulty signature (û, v̂) may
suffice to recover kt.

According to [5,4], we can also perform the analysis when the first pertur-
bated operation is a multiplication (i.e. instead of a square). Moreover the fault
model can be extended to the perturbation of a single operation during the ex-
ponentiation (i.e. such that p is error-free for subsequent operations).

This fault analysis does not work only for the ”Left-To-Right” implementa-
tion of the exponentiation but also for variants based on the ”Left-To-Right”
approach such that Fixed/Sliding windows [25] or the SPA-resistant ”Square
and Multiply Always” [16].

3.4 Extraction of the Key

The purpose of this part is to approximate the DSA secret key x as accurately
as possible from public values and the recovered part of nonce. In the context of
ElGamal-type signature schemes, previous results demonstrated the possibility
for retrieving the secret key from partially known nonces by using lattice reduc-
tion [21,26]. This result was later applied in the context of fault attacks [26]. The
following parts briefly describe how lattice attack works for obtaining the secret



key from previously recovered t-bit least significant part of k. This description
is inspired from the work of P.Q. Nguyen and I.E. Shparlinski [26].

Lattice attacks exploit the linearity of the second part of the faulty signa-
ture, namely: v̂ ≡ h(m)+xû

k mod q. The partial knowledge of the nonce k causes
an information leakage from v̂ about the private key x. As a consequence, by
collecting sufficiently many faulty signatures and recovering corresponding parts
of k, the attacker will be able to recover x.

Let kt be the t-bit recovered part of a nonce k and r ≥ 0 the unknown part.
Then, we have k = r2t + kt. As previously mentioned, the lattice attack takes
advantage of the second part of the faulty signature, that can be written as:

xû ≡ kv̂ − h(m) mod q

If v̂ 6= 0, we can also write

xûv̂−12−t ≡
(
kt − v̂−1h(m)

)
2−t + r mod q (11)

Let us define the two following elements:

a = ûv̂−12−t mod q

b =
(
kt − v̂−1h(m)

)
2−t mod q

Hence, from (11), we also have:

xa− b ≡ r mod q (12)

Since 0 ≤ r ≤ q/2t, ∃λ ∈ Z such that:

0 ≤ xa− b− λq ≤ q/2t (13)

And then:
|xa− b− q/2t+1 − λq| ≤ q/2t+1 (14)

From the equation below, the attacker gets an approximation of xa modulo q by
c = b+ q/2t+1. We can notice that the more t is high and the more accurate is
the approximation. But, to apply the lattice attack and determine the secret key
x, the attacker needs sufficiently many approximations. Now, suppose that the
attacker has collected d faulty DSA signatures (ûi, v̂i)1≤i≤d and recovered for
each one kit, the t-bit least significant part of the corresponding nonce ki (see
Sect. 3.3). From these values, he can also compute ai and ci such that, ∃λi ∈ Z:

|xai − ci − λiq| ≤ q/2t+1 (15)

The problem of recovering the secret key x from this set of equations is similar
to the hidden number problem introduced by D. Boneh and R. Venkatesan [12].
This problem can be solved by transforming it into a lattice closest vector prob-
lem [12,26]. Indeed, consider the lattice L generated by the row vectors of the



following matrix: 

q 0 · · · 0 0

0 q
. . .

...
...

...
. . . . . . 0

...
0 · · · 0 q 0
a1 · · · · · · ad 1/2t+1

 ∈M(d+1),(d+1) (Q) (16)

Then the vector α = (xa1 + λ1q, . . . , xad + λdq, x/2t+1) belongs to the lattice
since it can be expressed in a linear combination of the row vectors:

α =
d∑

i=1

λiLi + xLd+1 (17)

where Li stands for the i-th row vector of the matrix. The vector α is also
referred as the hidden vector because its last coordinate (i.e. x/2t+1) directly
depends on the hidden number x. From the set of equations obtained with faulty
DSA signatures (see Eq. 15), the hidden vector is approximated by the vector
β = (c1, . . . , cd, 0). β does not belong in the lattice but its coordinates can
be computed by the attacker since it relies only on public information and the
recovered part of nonce (kit)1≤i≤d. To find x, the attacker tries to find the closest
vector to β that belongs to the lattice L. If the lattice matrix is transformed to an
LLL-reduced basis [24], then it is possible to solve an appoximated instance of the
closest vector problem in a polynomial time using the Babai’s algorithm [3,29].
Once the closest vector is found, the attacker derives from its last coordinate
a candidate value for the secret key x′. Finally, to check the correctness of the
solution, the attacker has to check if the following condition is satisfied:

gx′ ≡ y mod p (18)

The success rate of the lattice attack depends on d, number of faulty signa-
tures to gather, and t, size of nonce recovered. According to [26,2], d ≈ l/t faulty
signatures may suffice to recover x (i.e. l corresponds to the size of q). Our exper-
imental results emphasise this evaluation. Furthermore, one can notice that the
attacker can exploit faulty signatures perturbated at different steps ti before the
end of the exponentiation. In this case, the attacker has to collect d ≈ l/min

i
(ti)

faulty signatures to succeed in the lattice attack.
Finally, this analysis can be easily adapted to attack ”Right-To-Left-based

implementations of DSA. In this case, the attacker also exploit faults on p that
has been injected t steps before the end of the exponentiation to recover most
significant bits of k. But, if q is close to 2l−1, the most significant bit of k may
often be equal 0. To avoid this loss of information, D. Boneh and R. Venkate-
san [12] proposed to use another representation for the MSB referred as most
significant modular bits MSMB [26]. By using this representation, the attacker
only has to slightly adapt the previous analysis to exploit the recovered most
significant parts of random.



3.5 Attack algorithm

Our fault attack against the public parameters of the DSA signature scheme can
be dividing in five distinguishable steps that have been presented throughout the
paper. This section provides a summary of the attack that lists these different
steps.

Step 1: Gather d faulty DSA signatures by modifying the public parameter p
at t step before the end of the computation of u. The number of signatures
to gather depends on the size of DSA but, in general d ≈ l/t,

Step 2: For each faulty signature (ûi, v̂i), recover the t-bit part of the corre-
sponding nonce ki using the fault analysis of Section 3.3,

Step 3: From the set of faulty signatures (ûi, v̂i)1≤i≤d and the parts of nonce
(ki)1≤i≤d, the attacker computes the lattice matrix and the public approxi-
mation vector β (see Sect.3.4),

Step 4: The attacker applies the LLL-reduction [24] to find a reduce basis for
the lattice. Then, he uses the Babai’s polynomial algorithm [3] to obtain the
closest vector to β that belongs in the lattice.

Step 5: Finally, the attacker extracts a secret key candidate from the last co-
ordinate of this vector and checks if it is the right key (see Eq. (18)).

4 Performance

In order to compare the performance of our brand new fault attack against DSA
public parameters, we will give a theoretical evaluation of its performance in
terms of fault number and computational complexity.

4.1 Theoretical Evaluation

Fault Number. In this section, we evaluate the number of faults N required
to recover the secret key. According to the model chosen (see Sect. 3.1), each
fault injection results to an exploitable faulty output. Hence, since one part of
nonce may be obtained from one faulty DSA signature (see sect. A), N can be
approximated by the number of faulty signatures to gather for extracting the
key (see sect. 3.4):

N = O
(
l

t

)
(19)

For a 160-bit DSA with t = 10 (which is a reasonable choice according to the
experimental results in Table 1), 16 faulty signatures may suffice to extract the
DSA key. According to [26], the number of faults can be decreased to log l. As
a comparison, the best known fault attack against the DSA public elements [22]
requires a mean of 4 · 107 faults to succeed in practice (and 2 · 108 in theory).
This significant improvement is due to the difference of method employed and
also because, in our analysis, each signature modified according to the model
can be exploited and so, brings a certain amount of information about the secret
key.



Computational complexity. In this section, we aim to evaluate the compu-
tational complexity of our fault analysis. According to Section 3.5, the overall
complexity C of the attack can be expressed as:

C = CLattice attack +
N∑

i=1

Cextract kt (20)

First, we evaluate the complexity Cextract kt
for recovering a t-bit part of nonce

k in the case of the ”Left-To-Right” implementation of the DSA in the theorem
below. The proof is given in Appendix B.

Theorem 1. For a random byte fault assumption against the ”Left-To-Right”
implementation of a DSA such that p is a n-bit prime and q|(p−1) a l-bit prime,
the computational complexity Cextract kt for recovering a t-bit part of the nonce
is at most:

Cextract kt = O
(
25+t · n2 · t

)
exponentiations (21)

Concerning the computational complexity of the lattice attack (see Sect. 3.4),
when the closest vector approximation algorithm is used, the running time is
subexponential in the size of q [26,1]. However, the exploitation of faulty sig-
natures allows to handle quite small lattices (i.e. d ≤ 20 vectors), so that the
complexity of the lattice reduction step is negligible with respect to the extrac-
tion of all the (kt)i.

As a consequence, our fault attack provides an algorithm with a running time
exponential in the parts of nonce to recover and subexponential in the size of
the secret key. The exponential dependency in the number of bits of nonces to
recover is not critical since it is a parameter set by the attacker in accordance
with his capabilities. These results have been validated experimentally (see Sect.
4.2) with the NTL implementation of the Babai’s algorithm.

4.2 Experimental Results

In order to evaluate the practicability of our fault attack, we have implemented
the attack algorithm described in Section 3.5 using the C++ NTL Library [29]
against a 160-bit DSA (i.e. n = 1024 bits and l = 160 bits). We have generated
faulty DSA signatures from a random message by simulating faults according to
the model (see Sect. 3.1). For the lattice attack, we have used as a lattice basis
reduction algorithm the NTL implementation of Schnorr-Euchner’s BKZ algo-
rithm [28] and the NTL implementation of the Babai’s algorithm [3] to solve the
approximated instance of CVP. The experimental results detailed below were
obtained on a Intel Core 2 Duo at 2.66 GHz with the G++ compiler. First, we
have estimated the time to extract parts of the nonce, for different values of t.
The computation of the average time to extract the t least significant part of a
nonce was obtained from 100 measures. These results for different values of t are
presented in Table 1. The obtained results highlight the exponential dependency
in t of the execution which emphasises our complexity analysis. As an example,



Table 1. Average time to extract t bits of nonce for a 160-bit DSA

t 4 bits 5 bits 6 bits 8 bits 10 bits

Average time 16 s 33 s 1 min 4 min 30 s 17 min

for t = 10 bits, it takes two hours for recovering all of the (kt)i on a dual-core
PC and a few second to recover the private key with the Lattice Attack [21,26].
But, these performances depend on the amount of kt bits an attacker is able to
recover by analyzing faulty signatures. As shown in Table 1, the choice of the
number of bits of nonce to recover is a tradeoff between the time of execution
and the number of faults. So this parameter has to be carefully chosen in func-
tion of the attacker’s resources. Finally, one can advantageously notice that since

Fig. 1. Success rate of the lattice attack in function of window length t and fault
number d

recovering a part of nonce only requires the analysis of one faulty signature, the
attacker can recover part of multiple nonces in parallel. Thus, the attacker can
optimize the fault analysis in terms of execution time.

Then, we have evaluated the performance of the lattice attack. In the condi-
tion of our experiments, it takes a few seconds for recovering the 160-bit secret
key from 10-bit parts of nonces extracted from 16 signatures. Hence, the anal-
ysis algorithm is practicable even on a standard PC. The success of the attack
depends on the window length t that determines the precision of the approxima-
tion and the number of faulty signatures d that are used for building the lattice.
The figure 1 presents the number of times when the attack succeeds in function
of t and d and shows that if d equals to the recommended value N = 160/t the
approximation may not be sufficient when t is small. For example, if the attacker
chooses to recover 6 bits of nonce because it only takes around 1 minute, with
160/6 = 26 faults the attack only succeeds one time out of 100, but with 29



faults the gain is increased to 45%. More t and d are high, more the attack has
chance of success, but increasing t takes a longer time and increasing d makes
a larger lattice. Moreover reducing t implies to increase the number of faults d.
So the choice of these parameters is also a tradeoff between time, ressource and
fault number.

5 Conclusion

The methods used in the literature to attack some cryptosystems by perturbing
public key elements can be divided into two classes. In the first class, one can
modify public elements before the computation, such that the algebraic prop-
erties of the finite fields are changed and the system becomes weaker. In the
second class, the perturbation can come up during the execution, splitting the
computation into two parts so as to isolate a small part of the key. The DLP-
based algorithm is not an exception and this paper described a practical attack
against DSA and El Gamal signature schemes. This attack belongs to second
class and does not require the knowledge of a correct signature. Partial values
of nonces are retrieved thanks to a guess-and-determine strategy and then the
secret key is derived from lattice reductions. The used fault model is the classical
byte modification or any other model allowing the guess of a value. The simula-
tion of the attack has shown its efficiency as it only requires 16 faulty signatures
to recover a 160-bit DSA secret key within a few minutes on a standard PC.
Moreover the simulation results confirm the complexity analysis and give some
decision factor for the choice of the parameters.

This attack underlines that it is essential to protect public elements against
fault attacks, for instance redundancy or infective techniques. The power of the
lattice reduction techniques shows that even a small leakage of information can
reveal secret information, even if it does not seem sufficient at first sight. There-
fore, lattice reduction algorithms must be also be seriously taken in account in
the context of fault attacks.
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A False-Acceptance Probability

This section provides a detailed analysis of the probability that a wrong pair
(k′t, p

′) satisfies (18). Hence, the false-acceptance probability can be modeled as:

Pr [(10) is satisfied | (k′t, p′) 6= (kt, p̂)]
⇔ Pr [(10) is satisfied | (k′t 6= kt or p′ 6= p̂)] (22)

For the sake of clarity, let us rewrite the previous equation:

Pr [A | B]

where A denotes the event ”(10) is satisfied” and B denotes the event ”k′t 6=
kt or p′ 6= p̂”. This probability is quite difficult to evaluate since the two events
are not independent. But, using the theorem of conditional probabilities we also
have:

Pr [A | B] =
Pr [A ∩ B]

Pr [B]

=
Pr [A]− Pr

[
A ∩ B̄

]
Pr [B]

<
Pr [A]
Pr [B]

(23)



The equation (10) belongs in Zq
∗, so, the probability that (10) is satisfied is:

Pr [A] =
1

q − 1
(24)

Knowing that kt is a t-bit value and that the model chosen for p̂ is a random
byte fault model, we can also evaluate Pr [B]:

Pr [B] = Pr [k′t 6= kt] + Pr [p′ 6= p̂]

=
t− 1
t

+
P − 1
P

, where P =
n(28 − 1)

8
. (25)

The values of kt and p′ are independent, that why the term of intersection is
null in the previous expression. From these partial results, we can deduce that:

Pr [A | B] <
1

q − 1

 1
2t − 1

2t
+
P − 1
P


<

1
q − 1

(
2tP

P (2t − 1) + 2t(P − 1)

)
<

1
q − 1

(26)

where P =
n(28 − 1)

8
.

Hence, the false-acceptance probability is bounded by:

0 ≤ Pr [(10) is satisfied | (k′t, p′) 6= (kt, p̂)] <
1

q − 1
(27)

As a consequence, this probability is negligible usual values of q (i.e. q is a 160-bit
value for a 160-bit DSA).

B Proof of the Theorem 1

According to the analysis described in Section 3.3, the attacker has to guess-and-
determine both the faulty modulus p̂ and kt. Hence, according to the random
byte fault model, the attacker has to test at most

n

8
·
(
28 − 1

)
possible values for p̂

and 2t for kt. Moreover, for each candidate pair, the attacker may have to perform
some quadratic residuosity tests and depending on the result, apply the Tonelli
and Shanks algorithm to obtain square roots. At most, the computation of square
roots will require to perform t tests followed by the computation of square roots.
Since the complexity of a quadratic residuosity test is one exponentiation and
the complexity of the Tonelli and Shanks algorithm is O (n) exponentiations,



the complexity of the nonce extraction is:

Cextract kt
= Ccandidate pairs · Csquare roots

= O
(n

8
·
(
28 − 1

)
· 2t · t · n

)
= O

(
2t+5 · n2 · t

)
exponentiations � (28)


