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Abstract. The DES encryption standard resisted rather well to some 20 years of
massive worldwide cryptanalysis effort. DES S-boxes also haven’t an obvious algebraic
structure that could lead to algebraic attacks. For all these reasons, DES is not only
very widely implemented and used today, but triple DES and other derived schemes
will probably still be around in ten or twenty years from now.
We suggest that, if an algorithm is so widely used, its security should still be under
scrutiny, and not taken for granted. In this paper we study the S-boxes of DES. Many
properties of these are already known, yet usually they concern one particular S-box.
This comes from the known design criteria on DES, that strongly suggest that S-boxes
have been chosen independently of each other.
On the contrary, we are interested in properties of DES S-boxes that concern a subset
of two or more DES S-boxes. For example we study the properties related to Davies-
Murphy attacks on DES, recall the known uniformity criteria to resist this attack, and
discuss a stronger criterion that would allow to resist a larger class of attacks. More
generally we study many different properties, in particular related to linear cryptanaly-
sis and algebraic attacks. The interesting question is to know if there are any interesting
properties that hold for subsets of S-boxes bigger than 2. Such a property has already
been shown by Shamir at Crypto’85 (and independently discovered by Franklin), but
Coppersmith et al. explained that it was rather due to the known S-box design criteria.
Our simulations confirm this, but not totally. We also present several new properties
of similar flavour. These properties come from a new type of algebraic attack on block
ciphers that we introduce. What we find is not easily explained by the known S-box
design criteria, and the question should be asked if the S-boxes of DES are related to
each other, or they follow some yet unknown criteria. Similarly, we also found that the
s5DES S-boxes have an unexpected common structure that can be exploited in a cer-
tain type of generalised linear attack. This fact substantially decreases the credibility
of s5DES as a DES replacement. This paper has probably no implications whatsoever
on the security of DES.
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1 Introduction
The motivation of our study lies in the following remark from Brickell et al. [5]:

“All the structure of the S-boxes that we have described appears to be the result of
design principles.
The question that remains is whether this is a complete list of the design principles
used in creating the S-boxes. This question could be answered in the negative if further
structure was discovered in the S-boxes that did not occur in the boxes created using
these design principles.”

In this paper we study various properties of S-boxes that are clearly not a consequence of
the design principles. The goal of this paper is also to show that there is still a lot of open
problems regarding different properties of S-boxes and their potential and real implications
for the security of block ciphers.



2 Design Criteria

2.1 S-Box Design Principles

In his PhD thesis [6], Laurence Brown writes:

“It has been stated [29] that there were 12 (possibly 13) criteria used, which resulted
in about 1000 suitable S-boxes, of which the implementors chose 8.”

As mentioned by Brickell et al. in [5],

“We would like to know what properties the S-boxes were designed to satisfy. This
information was never published and in fact, the only source for specific “design
principles” appears to be responses from the NSA to a study of the DES made by the
Lexar Corporation [24]. There were included in the report of the second workshop on
the DES held by the NBS in 1976 [4].”

In their comments, the NSA labelled the following as “design criteria” for the S-boxes:

P1. No S-box is a linear or affine function of the input.
P2. Changing 1 input bit to an S-box results in changing at least 2 output bits.
P3. S(x) and S(x+001100) must differ in at least 2 bits.

The following were labelled by the NSA as “caused by design criteria”:

P4. S(x) 6= S(x+11ab00) for any choice of a and b.
P5. The S-boxes were chosen to minimize the difference between the number of 1’s and 0’s in

any S-box output when any single input bit is held constant.

Another consequence of design criteria was noted by Meyer and Matyas in their book [30]:

P6. The S-boxes chosen required significantly more logical minterms to implement than a
random choice would require. A minterm is a logical AND (boolean product) of input bits
(and their negations), which form a necessary (but not sufficient) condition for a particular
output bit to be asserted. An output bit may have its value completely described by
the logical OR (boolean sum) of all its minterms. The number of minterms in such an
expression (after simplification) is a measure of its complexity. In the worst case, for n
input bits, 2n minterms may be needed to describe each output bit.

After the invention of differential cryptanalysis by Biham and Shamir [2], Don Coppersmith
[9, 10] revealed the criteria1 used in the S-box design two decades earlier:

1. Each S-box should have six bits of input and four bits of output. (In 1974 this was the
largest size S-box that could be accommodated if DES were to fit on a single chip.)

2. No output bit of an S-box should be too close to a linear function of the input bits.
(The S-boxes are the only nonlinear part of DES. Their nonlinearity is the algorithm’s
strength.)

3. Each “row” of an S-box should contain all possible outputs. (This randomizes the output.)
4. If two inputs to an S-box differ in exactly one bit, their outputs should differ in at least

two bits.
5. If two inputs to an S-box differ exactly in the middle two bits, their outputs must differ

by at least two bits. (Criteria (4) and (5) provide some diffusion.)
6. If two inputs to an S-box differ in their first two bits and agree on their last two, the two

outputs must differ.
7. For any nonzero 6-bit difference between inputs, no more than 8 of the 32 pairs of inputs

exhibiting that difference may result in the same output difference.
1 Some of these criteria have been observed beforehand by various authors, e.g. in [19] but their full

relevance was not understood.



Call an S-box “active” if not all input differences to the box are zero. The S-boxes were
designed to increase the number of active boxes. This maxim, along with a simplifying as-
sumption that S-box events are statistically independent, ensures that with n active S-boxes,
the probability of a particular pattern holding through n boxes is 1/4n.

Coppersmith commented that a better criterion than (2) would have been:

2’. No linear combination of output bits of an S-box should be too close to a linear function
of the input bits.

While neither (2) nor (2’) could be perfectly achieved, (2’) would have increased DES’s ability
to resist linear cryptanalysis. So would larger S-boxes, but these were not possible in the
technology of the time. There were also criteria to promote further randomization by the
permutation P.

In an invited talk [11] at Crypto’2000, Don Coppersmith mentioned the list of permanent
members of the IBM team that designed DES: Alan Konheim, Roy Adler, Bill Notz, Lynn
Smith, Horst Feistel, Alan Tritter, Bryant Tuckerman, Carl Meyer, Edna Grossman, Bob
McNeill, Walt Tuchmann, Jon Oseas, Don Coppersmith (all in Yorktown or Kingston). He
also mentioned the following list of design criteria:

1. 6 bits in, 4 bits out.
2. No output bit “too close” to linear function of inputs.
3. Fix two outer bits (autoclave): the rest is a permutation of 4 bits. In other words, ∆in =

0wxyz0⇒ ∆out 6= 0.
4. ∆in = 001100⇒ |∆out| ≥ 2.
5. Prob(∆out = 0|∆in) ≤ 8

32 .
6. Prob(∆out = 0|∆in) ≤ stricter but ad hoc.
7. ∆in = 11xy00⇒ ∆out 6= 0.
8. Implementation should use at most 47 gates.

Around 1976, the IBM team estimated the complexity of a chosen ciphertext attack to be
246.

3 Our Methodology and Notations

We call y1, . . . y4 the output bits of the S-box, y1 being the most significant (or rather the
leftmost) bit. We call x1, . . . x6 the input bits of the S-box, x1 being the leftmost bit. In some
other papers, for example in [35], the inputs are called A,B,C,D,E,F, with A corresponding
to our x1. The outputs are then called W,X,Y,Z with W being our y1.
In a study of S-boxes of DES, it is possible to compare the S-boxes to random S-boxes of the
same size. This is not a bad idea in general, as random S-boxes are expected to result in a
secure cipher if they are big enough. However, in the design of DES the S-boxes are very small,
designed to fit within the very basic IC technology of the early 70’s. Therefore many of the
design criteria give properties that are better than can be achieved with random S-boxes, for
example in terms of differential characteristic probabilities. Thus, in order to see if the design
of the S-boxes can be explained by the known design criteria, one should compare them not
to random S-boxes but to another set of S-boxes that already satisfy all these criteria. This
is what we do in the present paper, the basis for comparison is the set of S-boxes known as
s5DES and given in [28], also designed to provide better resistance to linear, differential and
Davies-Murphy attacks.



4 Davies-Murphy Attacks, Designing Better S-boxes and s5DES

4.1 Key Properties Leading to Davies-Murphy Attacks

The Davies-Murphy line of attacks [17, 1] is based on the fact that, for two consecutive S-boxes
in DES (for example 1-2, 2-3 or 8-1), two bits are connected (modulo XORing with some key
bits) to the other S-box. The exact connections are given on the following picture:

Table 1. The Principle of Davies-Murphy Attack on DES (here for S-boxes 1 and 2)
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Thus, if s denotes the XOR of I1 and J5 (second bit from the right in the first S-box XORed
with the first bit from the left in the second S-box), it is by construction of DES a known
linear combination of key bits.
For example for S-boxes 1 and 2 we have the following two equations:

s
def
= I1 ⊕ J5 = K43 ⊕K41

t
def
= I0 ⊕ J4 = K42 ⊕K40

During the DES encryption the couple (s, t) being fixed, it constitutes an a priori knowledge
that will have consequences on the output distribution of (X, Y ). Though each of X and Y is
distributed uniformly, the joint distribution is not uniform and depends on (s, t), and in fact
as we will see later only on s⊕ t.



In general, let Sp and Sq be two consecutive S-boxes, with q = p+1, p = 1 . . . 7 or (p, q) = (8, 1).
Let I and J be their inputs, and let X = Sp(I) and Y = Sq(J) be their outputs.
We recall that the S-boxes are permutations when the two ”side” bits are fixed. This property
plays an essential role in the attack. It implies that, if the distribution of (I, J) is uniform,
then the distribution of (X, Y ) will be uniform, and moreover each output value will be taken
exactly 16 times, once for each choice of (I5, I0, J5, J0). We call U this distribution. In DES,
the distribution of (I, J) is not uniform, and satisfies the conditions I1⊕J5 = s and I0⊕J4 = t.
Let Vst be the resulting distribution of (X, Y ).
In order to have the full description of Vst we will use the following notations:

D(X, Y, s, t) = Card{I, J ∈ F6
2, I1 ⊕ J5 = s, I0 ⊕ J4 = t, Sp(I) = X, Sq(J) = Y }

In order to compute D(X, Y, s, t), for a fixed couple (s, t), we will consider all possible cases

for (i, j, k, l)
def
= (I1, I0, J5, J4). Knowing that i⊕k = s and j⊕ l = t are fixed, there are in fact

only 4 possibilities for (i, j, k, l). In each of these cases, the pre-image chosen for one S-box
does not influence the other and it is easier to count. We introduce two other notations:

e(X, i, j) = Card{I ∈ F6
2, I1 = i, I0 = j, Sp(I) = X}

f(Y, k, l) = Card{J ∈ F6
2, J5 = k, J4 = l, Sq(I) = X}.

Then, counting over all the 4 possible cases for (i, j, k, l), we get:

D(X, Y, s, t) =
∑
i,j

e(X, i, t⊕ j)f(Y, s⊕ i, j).

It can be seen that the uniform distribution U is partitioned in 4 distributions V00, V01, V10

and V11. Moreover it can bee seen that there is a symetry that implies that there are only
two different (and complementary) distributions.
We note s := s ⊕ 1 (the negation). We will show that ∀X, Y,D(X, Y, s, t) depends only on
s ⊕ t. For this, it is sufficient to show that, for all (s, t) the distribution Vst defined by
(X, Y ) 7→ D(X, Y, s, t) is identical to Vst defined by (X, Y ) 7→ D(X, Y, s, t).
This fact is due to the S-box design criterion about 4 permutations, already used above. This
criterion implies the following facts:

∀j ∈ F2, e(X, 0, j) + e(X, 1, j) = 2
∀k ∈ F2, f(Y, k, 0) + f(Y, k, 1) = 2∑

i,j

e(X, i, j) =
∑
k,l

f(Y, k, l) = 4
From this we get:

D(X, Y, s, t) =
∑
i,j

e(X, i, t⊕ j)f(Y, s⊕ i, j)

=
∑
i,j

(2− e(X, i, t⊕ j))(2− f(Y, s⊕ i, j)) = D(X, Y, s, t)

It is also possible to show that D(X, Y, s, t) + D(X, Y, s, t) = 8 (this is due to the fact that
now the uniform distribution U is partitioned into only 2 distributions Us⊕t=0 and Us⊕t=1

that have therefore to be complimentary). From all the above, one can derive a ”symmetric”
formula for D(X, Y, s, t) due to Davies and Murphy [17], in the following form:

D(X, Y, s, t) = 4 + (−1)s⊕te(X)f(Y ) (#)

with by definition e(X)
def
= e(X, 0, 0)− e(X, 0, 1) and f(Y )

def
= f(Y, 0, 0)− f(Y, 1, 0).

This formula (#) is quite strong, yet from the above we see that it is due only to the way
consecutive S-boxes are connected in DES and to the fact that the S-boxes are constructed
as 4 permutations depending on the two ”side bits” in the input.
The key property (#) is precisely what allows to mount efficient attacks on DES. Indeed, it
is possible to see that it extends in an interesting way to several rounds of DES, see [17]. In
this paper we do not study the Davies-Murphy attack, we only study the S-boxes and their
resistance against the attack.



4.2 Our simulations on e() and f()

All the information on S-boxes necessary in the Davies-Murphy attack can be derived from the
following table that gives the values of (e(X), f(X)) for each S-box and each value of X. To
the best of our knowledge this table has never been published so far: Davies and Murphy [17]
only publish the resulting distribution (X, Y ) 7→ D(X, Y, s, t) for the pair (S1, S2) while the
most interesting pair is apparently (S7, S8) (which we confirm). From the table that follows,
all the distributions may be computed. (Apparently these results can also be found in [16],
but this paper was never published and is not widely available).

Table 2. Simulations on Davies-Murphy Attack on DES: values of (e(X), f(X))

X
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S1 0,1 -1,0 2,0 0,0 0,0 1,0 0,-1 -1,0 -1,-1 0,-1 -2,0 1,0 -1,-1 1,1 1,1 0,1

S2 0,-1 -1,-1 2,0 -1,1 -2,0 2,0 0,1 0,0 0,1 2,0 0,-2 -2,0 1,0 0,-1 -1,1 0,1

S3 -1,0 0,-1 0,0 0,1 0,0 0,1 -1,0 0,0 0,-2 1,0 1,1 1,0 0,0 -1,-1 0,1 0,0

S4 -1,0 0,-1 -2,0 0,1 0,0 0,1 -1,0 2,0 2,0 1,0 0,-1 0,0 0,-1 -2,0 0,1 1,0

S5 0,0 0,0 -1,0 0,0 1,1 -2,0 0,1 2,0 0,-2 0,0 0,0 0,0 0,1 0,-1 0,0 0,0

S6 0,0 0,1 0,0 0,-2 -1,0 1,-1 -1,1 0,1 -1,0 0,0 0,1 0,0 2,0 -1,0 1,-1 0,0

S7 0,2 -1,-1 0,1 0,-1 0,0 0,0 1,-1 1,-1 0,0 1,1 0,0 0,0 1,-1 -2,0 -2,0 1,1

S8 0,0 -1,0 -1,-1 0,1 0,0 2,0 -1,1 0,-1 0,1 -1,-1 1,0 1,0 0,-1 0,1 0,-2 0,2

4.3 Local Uniformity Criteria or How to Resist the Davies-Murphy Attack

We recall that D(X, Y, s, t) = 4 + (−1)s⊕te(X)f(Y ) (#). In order to make this uniform, we
need to have e(X)f(Y ) = 0. This can be done, for example, if the S-boxes verify one of the
following properties:
1. For every S-box and for every X, e(X) = 0.
2. For every S-box and for every X, f(X) = 0.
3. For every other S-box (for example all the S-boxes with odd numbers), and for all X,

e(X) = f(X) = 0.
In Section 4 of [1], the authors give conditions written in terms of differentials, and that are
sufficient respectively to achieve points 1 and 2.
Design Criterion 4.3.1. For every S-box,

∀x, S(x) 6= S(x⊕ (0abc11)b),∀a, b, c.

Design Criterion 4.3.2. For every S-box,
∀x, S(x) 6= S(x⊕ (11abc0)b),∀a, b, c.

Similarly, it is easy to see that we may also achieve point 3 by the following:
Design Criterion 4.3.3. For every second S-box, both conditions of Criterion 4.3.2 and
Criterion 4.3.2 hold.
In order to make DES secure against the Davies-Murphy attack it is sufficient that one of
these criteria is satisfied. For example, in [28], the authors replace the S-boxes of DES by
a new set of S-boxes, reportedly following all the known design criteria, and having better
resistance against Davies-Murphy attacks. We verified that these S-boxes satisfy the Design
Criterion 4.3.2 (cf. (D-1) in Section 3) to achieve f = 0. However, we saw that these S-boxes
do not verify our Criteria 4.3.1 and 4.3.3.
Remark 1: The first two criteria allow to select DES S-boxes independently of each other, and
yet to become fully resistant against the ”basic” Davies-Murphy attack using two consecutive
S-boxes.
Remark 2: Though one of the above criteria allows to resist the ”basic” Davies-Murphy
attack, in the next section we will see that the s5DES S-boxes are not yet perfect against ”the
general idea of Davies-Murphy attacks” that could use several consecutive S-boxes.



4.4 About Global Uniformity Criteria

A good cipher should resist not only all the known attacks, but if possible, also potential or
future attacks. In the previous section we saw that it is possible quite easily to insure that
the Davies-Murphy attack with pairs of S-boxes will not work. The question is, how to make
sure that there will be no similar attacks using, for example 3 or 4 consecutive S-boxes ?
The extension of Davies-Murphy for 3 consecutive S-Boxes has already been considered [17,
28]. The design of s5DES specifically prevents the Davies-Murphy attack on triplets of S-
boxes. In this paper we want to define a more general resistance criterion that encompasses
the resistance against the extension of the attack for 4 and more S-boxes.
For this, given a Feistel cipher defined by several rounds Ψ(f) : {0, 1}2n → {0, 1}2k of the
form:

Ψ(f)
def
=

{
L← R
R← L⊕ fK(R)

More or less informally, we require the following properties:

a For a fixed K, the output distribution {0, 1}k → {0, 1}k defined by R 7→ fK(R) should
be as close to uniform as possible.

b This distribution, if not uniform, should depend on the key K in ”a complex way”.

For comparison, here are the statistics obtained for DES and s5DES:

Table 3. Global uniformity in one round of DES vs. s5DES

n # of values taken n times
DES s5DES

0 1371894909 68006170

1 1831024093 4159136276

2 898337028 67652370

3 121636222 171832

4 63911645 648

5 3725130 0

6 3702019 0

7 69289 0

8 643992 0

9 9632 0

10 8369 0

11 0 0

12 4720 0

13 0 0

14 0 0

15 0 0

16 248 0

Comparison: First of all we see that for a fixed K, DES round function is not bijective. This
property has previously been noted by many authors, see [19, 29, 18]. Here we jump into more
quantitative analysis and observe that: 32 % of outputs are never taken, 43 % of outputs are
taken once, 21 % are taken twice etc. 3 % are taken three times etc. In comparison, for s5DES,
the distribution is much more close to uniform, 96 % of outputs are taken exactly once, and
only 1.6 % are never taken. Clearly s5DES is a very good cipher compared to DES (but yet
not perfect) also for our new (global) security criterion.



Are These Relevant to the Security of DES and s5DES ?

The answer to this question is not obvious. In fact there is not only doubt whether the observed
property are at all relevant to security of DES and s5DES, but also, which, DES ro s5DES is
indeed a stronger design. Below we present some arguments:

1. For sure, our requirement assures that even if we use all the outputs of the round function
the Davies-Murphy attack is impossible.

2. However creating ”optimal” security against one attack may introduce other weaknesses.
The actual design choices of DES and any other cipher are usually rather a matter of
compromise between conflicting criteria.

3. In the best version of Davies-Murphy attack, the S-boxes 7 and 8 only are exploited, and
for this pair it can be seen from table 2 and formula (#) that, when s⊕ t = 0, there are
exactly two values X, Y that are not taken: (13, 15) and (14, 15). This accounts for 2 · 24·6

values that are not taken in the global distribution above, i.e. for 0,8 %. The remaining
31 % are not exploited in the Davies-Murphy attack. This may suggest that there may be
better attacks on DES that would use more than 2 consecutive S-boxes or/and combine
known properties. Unfortunately:

4. This remark have been suggested by one of the referees of FSE 2004. The probability
distribution observed for DES ressembles that of a random function except at 11 and 16.
If we replace the round function by a random function, the Luby-Rackoff theory allows to
prove that the cipher is secure. Therefore, one should not think that such a biased output
is by itself insecure.

5. Yet all hope is not lost: The real question is how the biased distribution depends on the
key and if this leads to properties that can be combined for several rounds. We don’t
know if this remark on DES can lead to more efficient attacks than those that are already
known.

6. As concerning s5DES, we observe that the distribution for s5DES is much more uniform
than for DES (though it is not perfect). But this does not necessarily mean that s5DES
is stronger than DES.

Clearly, our strict uniformity requirement is probably too strong to protect practical Feistel
ciphers against practical attacks. Besides, it is an open problem to know if there is a set of
S-boxes that satisfies all the design criteria and giving a strictly uniform distribution.

4.5 Davies-Murphy Attacks and Linear Cryptanalysis

Linear cryptanalysis of DES was not known when the Davies-Murphy attacks were developed
in the 80s [15, 17, 16]. At Eurocrypt’94, Biham remarked on page 347 of [3] that all the
existing Davies-Murphy attack contain a linear attack, and moreover the complexity of the
two is roughly the same, i.e. the Davies-Murphy attacks are in a way linear attacks. Thomas
Pornin has also studied general criteria of resistance against Davies-Murphy attacks, see [34].
In this light, it appears to us that in general, all Davies-Murphy attacks on an arbitrary cipher
should be seen as a multiple approximation linear attacks (see [26]).



5 Experimental Facts on DES Related to Linear Cryptanalysis

In this Section we study a property that at the time of discovery seemed very surprising
because it holds simultaneously for several DES S-boxes. We will see that it is not so surprising.
However in Section 6 we present similar and even more surprising properties.

5.1 Linear Characteristics Common to Several S-boxes

In a paper published at Crypto’85 [35], Shamir shows that a strong bias (also discovered by
Franklin in his PhD thesis), is present in all S-boxes of DES. There is a strong correlation
between the second input bit x2 and the XOR of all output bits y1 ⊕ y2 ⊕ y3 ⊕ y4. However
later Don Coppersmith et al. observed that this fact could to some extent be explained by
the known design criteria on DES S-boxes, see [35].
To see this, we looked at the number of linear characteristics of the form∑

i

αixi +
∑

i

βiyi = γ

that are true a probability somewhat 6= 1/2 for several S-boxes. Given a linear approximation
(α, β) We count the number Ai of outputs for which the approximation is true. Then we will
compute the following three statistics:

1. A being the average of the Ai,
A =

1
8

8∑
i=1

Ai

The expected value of A is 32.
2. D will mesure the deviation from the actual average, i.e.

D2 =
8∑

i=1

(Ai −A)2

3. D′ will mesure the deviation from the expected average, i.e.

D′2 =
8∑

i=1

(Ai − 32)2

In the following table we show some leading results, all those for which D ≥ 5, sorted by the
decreasing values of D.

Table 4. Simultaneous Linear Approximations in DES

DES

A D D′ α β

25.50 35.30 44.36 010000 1111
27.50 23.96 40.40 111011 0100
27.50 18.92 37.63 111111 0010
36.75 17.42 61.22 000100 1111
36.50 14.35 59.73 001011 0011
27.25 12.94 34.35 010000 1101
36.75 11.98 59.90 011001 1010
27.50 11.22 34.41 111111 1000

s5DES

A D D′ α β

37.50 24.12 65.42 100010 1101
36.50 22.76 62.29 111111 0010
26.00 11.66 30.59 100010 1011
36.50 10.86 58.99 101110 1101
26.75 10.17 32.06 001010 0111
27.50 8.83 33.70 110110 0110
36.75 7.97 59.23 111000 0101

The property discovered by Shamir in [35] happens to be the leading result in the left table. If
we remove this leading property with D = 35.30, we see no difference whatsoever between the
behaviour of DES and s5DES. This confirms the idea that these properties can be accounted
for by the known design criteria on the S-boxes, as claimed by Coppersmith et al., see [35].



6 Experimental Facts on DES Related to Algebraic Attacks

6.1 Algebraic Attacks on Block Ciphers

In this paper we do not present any attack, we only study the DES S-boxes. We will however
study properties that are (at least remotely) motivated or related to some known attacks.
The study of monomial equations (and later of bi-monomial equations) is motivated, as we
will explain below, by the XSL-type attacks on block ciphers [8]. Though it is not proven
that these attacks work, and is quite unclear what is the exact complexity of these attacks,
the cautionary (or ”paranoid”) approach in the design of block ciphers will be to counter
such attacks. And it is not so hard to achieve. Following [8], to prevent algebraic attacks,
one should make sure that the S-boxes of the cipher are not described by a small system of
multivariate equations with a small number of monomials. In theory it cannot be avoided,
and obviously every S-box can always be described by a system of r multivariate equations
with t monomials, with some big (r, t). In practice it will be true for random S-boxes: it is
shown in [8] that the complexity of the XSL attack is (at least) double-exponential in the
size of the S-box. However, for many practical ciphers, the S-boxes are usually selected to
be better than random in many respects, and for good reasons. Therefore, we propose not
to switch back to random S-boxes, but to add design criteria. We will therefore require that
”good” S-boxes should (in addition to many known criteria) also behave better or as good as
random in this aspect. Thus, still following [8], we need to make sure that t is always quite
big and that r/t is quite small, (at least compared to random S-boxes of the same size).
In [8], authors study mainly multivariate equations of small degree (2 or 3). However it
is (apparently) not necessary that the equations are of small degree in order to apply the
XSL approach (however they cannot be completely arbitrary either, and should for example
contain linear monomials in order to connect with other equations of the cipher). Following
the (heuristic and approximative) results of [8], what would decrease the complexity of the
alleged XSL attack, is to find a small set of t monomials with small t, for example t = 100, and
exhibit some r equations with r not much smaller than t, for example r = 50, and hopefully
more, the ideal situation would be to have r ≈ t.

6.2 Monomial Equations

A simple way to obtain a system of equations with r ≈ t is to use monomial equations, i.e.
equations that are composed of only one monomial, for example it can be seen that for the
AES/Rijndael S-box we have always 0 = x8y1y5y6y7y8.
In general the existence of a large number of such equations can be shown by probability
considerations. For example if we consider a DES-size S-box with s = 6 inputs, the term
x1x5x4x3x2 is equal to 1 only with probability 2−5 and the number of inputs x for which it
is 1 is exactly 2s ∗ 2−5 = 2. If we multiply this term by for example y2, the probability that
y2 is 0 for all these two inputs is quite big: 2−2.
Thus we see that for a randomly chosen S-box, with probability only 2−2, the equation
0 = x1x5x4x3x2y2 is true with probability 1. The same is true for a large number of similar
equations.
It is not at all certain that for such (very special) equations the XSL attack will work well.
However, again the ”paranoid” approach would be to study these equations.
We have compared the number of monomial equations found for the DES, s5DES and a
random S-box of the same size.



Table 5. Monomial Equations in DES vs s5DES

random
S-box

0− 463

DES S-box

1 2 3 4 5 6 7 8

170 140 179 145 207 154 153 173

s5DES S-box

1 2 3 4 5 6 7 8

167 170 189 135 133 136 100 170

Statistical properties: We look at the average values and standard deviations of the values
we obtained. 1000 random DES s5DES

S-boxes S-boxes S-boxes
mean value 207.8 165.1 150.0

standard deviation 86.8 20.4 27.0

We see that the design criteria constrain the number of monomial equations in a small interval
around 160, whereas they vary a lot for random S-boxes.

6.3 Interesting Remark Concerning the Design of Block Ciphers

In our simulations we found, quite surprisingly, that though as explained above the existence
of such monomial equations is a natural phenomenon, there are S-boxes that have no such
equations whatsoever. We obtained 0 for exactly 6.4% of random S-boxes of the same size as
in DES. From the algebraic attacks proposed in [8] with low-degree equations, the conclusion
was that one should use random S-boxes2. Yet, we see that some S-boxes could be stronger
than random S-boxes of the same size against algebraic attacks with monomial equations. A
possible conclusion would be:

Design Criterion 6.3.1. A “paranoid” S-box should have a small number of monomial
equations in order to resist potential algebraic attacks.

We emphasise the fact that it is not demonstrated that algebraic attacks on block ciphers
from [8] do indeed work, and even less certain for algebraic attacks that would use/mix with
equations having a quite small number of monomials but being of higher degree than in [8].

6.4 Bi-Monomial Equations

For all DES S-boxes, we also computed the exact number equations that have two monomials.
These are divided in two parts, equations having one and two monomials. We also computed
the exact number monomials that appear in these two sets of equations put together, that
turns out to be lower than expected. Again, the results are compared to random S-boxes of
the same size and to the set of s5DES S-boxes from [28].

Table 6. Bi-monomial Equations in DES vs s5DES

1 monomial
2 monomials

all monomials

random
S-box

0− 463
233− 524

606− 703

DES S-box

1 2 3 4 5 6 7 8

170 140 179 145 207 154 153 173
360 385 322 362 303 345 379 329

587 588 565 569 569 556 589 546

s5DES S-box

1 2 3 4 5 6 7 8

167 170 189 135 133 136 100 170
352 324 309 367 381 354 442 310

582 540 560 561 566 560 600 546

Observations: We see that the behaviour of s5DES is similar to DES. Nothing suspicious is
found so far.
2 For random S-boxes the complexity of algebraic attacks is expected to be double-exponential in

the size of the S-box



6.5 Bi-Monomial Equations Common for Several S-boxes

We looked at the number of bi-monomial equations that are true simultaneously for several
different S-boxes.

Table 7. Simultaneous Bi-monomial Equations in DES vs s5DES

8 random DES s5DES
S-boxes S-boxes S-boxes

1 S-box 2359 2049 2174

2 S-boxes 183 241 265

3 S-boxes 15 32 37

4 S-boxes 3 21 6

5 S-boxes 2 12 0

6 S-boxes 0 0 0

7 S-boxes 0 2 0

8 S-boxes 0 0 0

The behaviour of s5DES is not really different that for random S-boxes. We see however that
the DES S-boxes are somewhat special: there are equations that are true simultaneously for
7 of them. This in itself is not yet extraordinary, and it could occasionally happen even for
random S-boxes.

6.6 A Closer Look at Simultaneous Bi-Monomial Equations

In this section we study the leading bi-monomial equations the are common for at least 5 or
more S-boxes. For s5DES, no such equations exist, and therefore these equations probably do
not result at all form the known design criteria on DES.
Here are all the equations true for some subset of 7 S-boxes:

S-boxes{
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x5 x6 y1 11110111
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x5 x6 y1 11110111

And here are all the equations true for some subset of 5 S-boxes:
S-boxes

x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x5 x6 y4 11001101
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x5 x6 y2 10110110
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x5 y1 10110110
x1 x2 x3 x4 x5 x6 = x1 x2 x4 x3 x6 y1 10110011

x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x5 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x1 x3 x5 x6 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x3 x4 x5 x6 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x1 x3 x4 x5 x6 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x5 x6 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x6 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x2 x3 x4 x5 x6 y1 y2 10110110
x1 x2 x3 x4 x5 x6 = x1 x2 x3 x4 x5 x6 y1 y2 10110110

We observe that x3 is present in all equations, this however might be a consequence of the
design criteria. We also observe that these equations clearly distinguish y2 and y1. This cannot
be a consequence of the known design criteria, as these are invariant modulo any permutation
of the yi. On the contrary up till now, the output of DES S-boxes were believed to be of
”equivalent status”, as stated by Davies on page 92 of [15].
We also observe that these equations clearly distinguish S-boxes 2, 5 and 8, and no such
distinction can be a consequence of the design criteria.



Can All This Happen by Accident ?

First of all, the existence of equations such as x1x2x3x4x5x6 = x1x2x3x4x5x6y1y2 is not so
surprising, given a fixed equation, the probability it is true for a random S-boxes is not small,
can be even 1/4, see 6.2. There one can admit that it can happen simultaneously for several
S-boxes (even if clearly, we observe a difference in Table 7). Accordingly, we observe the set
of last 8 equations, among the equations that are true for 5 S-boxes. It is very homogenous:
the set of S-boxes for which these equations are true is exactly the same, and the product of
yi that appears in these equations is exactly the same. Yet we assume that all this is normal
and could have happened by accident.
Then, we want to know what is the probability, for this subset, of obtaining always the same
subset of 5 S-boxes, in each of the 8 cases. A naive estimation is that it would be about(
8
5

)−7 ≈ 2−41. Unfortunately, as pointed out by a referee of FSE’2003, this estimation is
not correct. This is because all these 8 Boolean equations are highly correlated. A tentative
estimation that we will not detail suggests that the probability of this happening is only about
2−14. In practice less, because we assumed that the statistics of DES contained in Table 7 are
normal.
We offer no real conclusion. Though it seems that the observed properties are not a con-
sequence of known design criteria, and can hardly happen by chance, the probability they
actually do happen is not so small. They could easily be a consequence of some yet unknown
design criteria that increase some probabilities. It is very unlikely that these properties are
useful in some kind of attack on DES.
Remark: At Eurocrypt’94 Matsui studies [32] the security of DES against differential and
linear attacks considering different orders of S-boxes. Rearranging S-boxes is related to dif-
ferent properties shown in this paper, but it cannot possibly explain them (for example why
bits y2 and y1 are distinguished in DES ?). To the best our knowledge, no known attacks on
DES do explain these properties.

7 Conclusion

DES is the most important cryptographic algorithm ever made. Though DES keys of 56 bits
are now completely out of date, one should not forget that there millions of them in use, and
the triple-DES will probably still be widely used for many years to come. In the meantime
the cryptographic research advances, and therefore the security of DES should not be taken
for granted. In particular one should think not only about known attacks on DES, but also
try to think what could be the future attacks.
In this paper we raised an important question that received so far very little attention: have
the S-boxes of DES been chosen independently of each other on some criteria (as currently
believed) or are they also some global design criteria for the whole set ? With regard to
this question, we studied many different properties of DES subsets of 2 or more S-boxes. We
defined a general security criterion on the round function that encompasses a large class of
attacks including the Davies-Murphy attack. We also studied other properties related to linear
cryptanalysis and algebraic attacks on block ciphers. We presented some marginal, but not
really conclusive evidence that the S-boxes of DES have NOT been chosen independently of
each other. This is clearly not included in the known design criteria.
Accidentally, we introduced a new type of algebraic attack on block ciphers (based on the
XSL attack from [8]), and a new rather ”paranoid” criterion to resist such attacks (even if
it is not demonstrated that such attacks will work in practice). We show that none of the
S-boxes of DES or s5DES satisfy this criterion. We show however that there exist S-boxes
that do satisfy it. This could be of independent interest.



This paper also shows that the design of s5DES, claimed much better than DES, is far from
being perfect. We were surprised to find that also the S-boxes of s5DES have NOT been
chosen independently of each other, and this (again) can hardly be explained by the (even
extended) design criteria on ”improved DES”. In addition, s5DES still does not achieve our
global uniformity criterion for the outputs of the round function F (). These properties do
seriously decrease the credibility of s5DES as a DES replacement. On the contrary, as long as
there is some uncertainty concerning the security of AES [8], it is possible that it is DES (or
rather triple DES), that will for many people remain the best choice as a trusted encryption
algorithm. In spite of and also because it is under intense scrutiny of the research community.
Acknowledgments. We thank Eli Biham and anonymous referees of FSE 2003 for valuable
comments.
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A What do s5DES S-boxes Say to Each Other ?

We have seen that the S-boxes of DES have not been chosen independently of each other. It
does not however mean that DES is not secure. It does not mean either that s5DES is more
secure than DES.
In fact, in this section we will show that also for s5DES, quite surprisingly the S-boxes have
NOT been chosen independently of each other.
We know from Section 4.3 that in order to resist the basic Davies-Murphy attack with pairs
of S-boxes, it is sufficient that for each of the S-boxes, we always have f(X) = 0, and this can
be for example achieved following the Design Criterion 4.3.2.
It can be seen that the Design Criterion 4.3.2 implies that, in the table of the S-box, for two
lines that have the same parity, (i.e. lines 0 and 2 or 1 and 3) the left halves of the lines are
permutations of the same subset A or B (the other halves are their complements Ac and Bc

in {0..16}). Therefore we always have the following structure:

s51
A Ac

B Bc

A Ac

B Bc

Yet, what we discovered is that the same sets A, B have been reused, for no apparent reason,
for other S-boxes of s5DES:

Table 8. The Unexpected Common Structure Between Different S-boxes of s5DES

s51
A Ac

B Bc

A Ac

B Bc

s52
Ac A

Bc B

Ac A

Bc B

s53
C Cc

B Bc

C Cc

B Bc

s54
Ac A

Bc B

Ac A

Bc B

s55
C Cc

Bc B

C Cc

Bc B

s56
D Dc

B Bc

D Dc

B Bc

s57
Cc C

Bc B

Cc C

Bc B

s58
A Ac

B Bc

A Ac

B Bc

Legend: each half-line is filled with a permutation of sets A, B, C, D, Ac, Bc, Cc, Dc with:

A = {1, 2, 4, 7, 9, 10, 12, 15}, B = {1, 2, 4, 7, 8, 11, 13, 14}, C = {1, 2, 5, 6, 8, 11, 12, 15}, D = {2, 3, 4, 5, 8, 9, 14, 15}.

Only four different sets are used in s5DES, instead of potentially 2 · 8 = 16 different sets that
could be used. Moreover, in the second and the last lines, one always has B or Bc for all the
eight S-boxes.
As a consequence of this observation, when x6 = 1 and x2 is fixed, the set of outputs of the
S-boxes is B or Bc. This may potentially lead to many different attacks. We propose here two
directions.

A.1 Bi-Linear Cryptanalysis of s5DES

In a paper to be presented at Crypto 2004 [12] Courtois introduces the bi-linear cryptanalysis
of block ciphers. The analysis of s5DES S-boxes w.r.t. this new attacks shows the following
very surprising fact, clearly closely related to our observations of Fig. 8.

Fact A.1.1 (Best Bi-Linear Characteristics of s5DES). For each of the s5DES S-boxes,
there is exactly one bi-linear equation that is true with probability 1:

S1. 1+x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0
S2. x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0
S3. 1+x[2]+ y[1]+ y[3]+y[4]+x[6]*y[2] = 0



S4. x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0
S5. 1+x[2]+x[6]+y[1]+ y[3]+y[4]+x[6]*y[2] = 0
S6. 1+x[2]+ y[1]+y[2]+y[3]+ x[6]*y[4] = 0
S7. x[2]+ y[1]+ y[3]+y[4]+x[6]*y[2] = 0
S8. 1+x[2]+ y[2]+y[3]+y[4]+x[6]*y[1] = 0

These allow to build bi-linear attacks on reduced (and full) versions of s5DES, for example
we have the following fact :

Fact A.1.2 (Weakness of s5DES). Though for linear cryptanalysis s5DES is substantially
stronger than DES, for bi-linear cryptanalysis, there are 3-round characteristics for that are
better than best existing 3-round characteristic that exist in DES.

For details we refer to the extended version of [12].

A.2 Linear Cryptanalysis and s5DES

The quadratic equations described in the previous section imply only one product, and there-
fore we can use these to derive several linear equations on the S-boxes of s5DES that will be
true with very high probability (these remain still closely related to our observation of Fig.
8). Thus we obtain that the round function of S5DES have many linear approximations that
have low probabilities, and present a surprisingly regular structure:

Table 9. Interesting Linear Approximations Found for s5DES

S1 16/64 I[1] O[17 23 31] S5 16/64 I[17] O[8 25 3]

S1 16/64 I[1] O[9 17 23 31] S5 48/64 I[17] O[8 14 25 3]

S1 16/64 I[1 5] O[17 23 31] S5 16/64 I[17 21] O[8 25 3]

S1 48/64 I[1 5] O[9 17 23 31] S5 16/64 I[17 21] O[8 14 25 3]

S2 48/64 I[5] O[28 2 18] S6 16/64 I[21] O[4 29 11]

S2 48/64 I[5] O[13 28 2 18] S6 16/64 I[21] O[4 29 11 19]

S2 48/64 I[5 9] O[28 2 18] S6 16/64 I[21 25] O[4 29 11]

S2 16/64 I[5 9] O[13 28 2 18] S6 48/64 I[21 25] O[4 29 11 19]

S3 16/64 I[9] O[24 30 6] S7 48/64 I[25] O[32 22 7]

S3 16/64 I[9] O[24 16 30 6] S7 48/64 I[25] O[32 12 22 7]

S3 16/64 I[9 13] O[24 30 6] S7 48/64 I[25 29] O[32 22 7]

S3 48/64 I[9 13] O[24 16 30 6] S7 16/64 I[25 29] O[32 12 22 7]

S4 48/64 I[13] O[20 10 1] S8 16/64 I[29] O[27 15 21]

S4 48/64 I[13] O[26 20 10 1] S8 16/64 I[29] O[5 27 15 21]

S4 48/64 I[13 17] O[20 10 1] S8 16/64 I[29 1] O[27 15 21]

S4 16/64 I[13 17] O[26 20 10 1] S8 48/64 I[29 1] O[5 27 15 21]

It is quite strange for a cipher that have been proposed mainly to resist Matsui’s linear
cryptanalysis of DES. It is possible that, for single linear approximations, s5DES resists linear
cryptanalysis better than DES, but for some kind of multiple linear attack (the idea was
proposed in [26]), s5DES could be less secure that DES. This requires further research.

A.3 Tentative Conclusion on s5DES

We see that the S-boxes of s5DES have not been chosen independently of each other, and
this for a completely unknown reason. It is not implied either by any of the published design



criteria on DES S-boxes, nor it is implied by the Davies-Murphy attacks (for this it is sufficient
to select sets A and B independently for each S-box).
The authors of s5DES do NOT claim that the S-boxes have been chosen independently of
each other. At page 6 of [28] they give a Condition 4 (L-3) that gives different requirements
for each S-box, which is motivated by avoiding iterative linear approximations that would
hold for 4 rounds. Therefore, each of the S-boxes of s5DES have been designed following a
slightly different set of criteria. Yet, if we look at this Condition 4 (L-3) of [28], there is no
apparent link with the strange properties we discovered, for example nothing suggests that
the neighbour S-boxes 1 and 8 would be built with exactly the same sets as it is shown in
Table 8.
The observed properties are disturbing, cannot happen by chance, are not explained by the
authors, and do not appear to result from the set of design criteria given in the paper [28]. Un-
fortunately the authors did not publish the source code that allows to obtain these S-boxes.
The observed properties could be a consequence of sloppy design, introducing unnecessary
similarities between the S-boxes. It might also result from the fact that in computer simula-
tions the authors did only find about two or three 8 S-boxes satisfying all the criteria, and
the authors somewhat derived 8 S-boxes from these S-boxes.
It is an open problem to see of these properties allow to break s5DES. Yet they substantially
decrease the credibility of s5DES as a DES replacement. For example, we have seen that they
lead to bi-linear attacks on reduced versions of s5DES that are better than for DES, see [12].


