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a b s t r a c t 

Over the last 30 years, a number of secure processor architectures have been proposed to protect soft- 

ware integrity and confidentiality during its distribution and execution. In such architectures, encryption 

(together with integrity checking) is used extensively, on any data leaving a defined secure boundary. 

In this paper, we show how encryption can be achieved at the instruction level using a stream cipher. 

Thus encryption is more lightweight and efficient, and is maintained deeper in the memory hierarchy 

than the natural off-chip boundaries considered in most research works. It requires the control flow graph 

to be used and modified as part of the off-line encryption process, but thanks to the LLVM framework, it 

can be integrated easily in a compiler pipeline, and be completely transparent to the programmer. 

We also describe hardware modifications needed to support this encryption method, the latter were 

added to a 32-bit MIPS soft core. The synthesis performed on a Altera Cyclone V FPGA shows that en- 

cryption requires 26% of extra logic, while slowing-down execution time by an average of 48% in the best 

setting. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

An increasing number of applications require processor archi-

ectures that are both lightweight and able to preserve software

onfidentiality. The historical motivation was a purely economic

ne: protect intellectual property and prevent illegitimate duplica-

ion. Nowadays, software confidentiality is rather seen from a secu-

ity perspective, to prevent reverse engineering. The program being

ore resilient to analysis, the effort needed to discover weaknesses

s increased, and critical patches can be deployed without fear of

ero-day exploits. 

If one can modify the hardware, software encryption is a well-

stablished way to achieve this confidentiality. The program is en-

rypted using a regular cryptographic primitive, and decryption is

one using a hardware implementation of the decryption algo-

ithm in an assumed secure area. The latter is close to the proces-

or executing the software, at least on the same chip. Aside from

he confidentiality property, encryption alone brings other interest-

ng properties from a security perspective: 
� This work is an extended version of the paper [1] published in the Euromicro 

SD 2017 proceedings. 
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• As each target have different encryption keys, shellcode design

is harder, thus exploits cannot be deployed quickly on a large

scale. 

• It can be used as a building block to provide control flow in-

tegrity, as shown recently with the SOFIA [2] architecture. 

Current secure processor architectures are mostly concerned

ith protecting programs and data stored on off-chip memories

ike Flash, Dynamic RAMs (DRAMs), the chip area being assumed

afe. For this reason, and also for performance concerns, decryption

s usually done at a cache (level 1, or level 2) memory boundary. As

 consequence, data are decrypted by chunks made of one or more

ache lines (32B, 64B, 128B or even more). This way, the latency

f the decryption algorithm can be almost completely hidden, by

verlapping the decryption with memory fetches on a cache miss. 

However, to the best of our knowledge, very few works

but [3] ) provide methods to achieve a finer encryption granularity,

amely at the instruction level. Yet, it is required for applications

n which the target processor either do not have cache, or needs

o maintain encryption deeper in the memory hierarchy. 

In this work we show how encryption can be done at the in-

truction level using stream ciphers, which are known to be very

ightweight and efficient. It requires the control flow graph of the

rogram to be used and restructured as part of the encryption pro-

ess. The proposed method, developed as a LLVM [4] backend pass,

an encrypt almost any given machine code and do not require any

https://doi.org/10.1016/j.micpro.2018.10.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/micpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.micpro.2018.10.001&domain=pdf
mailto:thomas.hiscock@wanadoo.fr
https://doi.org/10.1016/j.micpro.2018.10.001
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Fig. 1. A typical system considered in this work, with the on-chip insecure area 

drawn. 
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modification from the programmer but adding a compiler flag. We

stress that we only describe a method for encrypting the software,

not verifying its integrity. Of course, integrity is as much as impor-

tant as encryption in secure processors [5] , but its treatment can

be somewhat orthogonal, so we decided to focus on the encryption

mechanism. 

The hardware support, including decryption hardware (based

on the Trivium [6] stream cipher) is added into MIPS soft core and

deployed on a low-cost Altera Cyclone V Field Programmable Gate

Array (FPGA). On this small core, the encryption mechanism re-

quires only 26% of extra logic. The execution slowdown is highly

dependent on the compilation profile. In the best setting (perfor-

mance optimized programs), we measured an average slowdown of

48%, across all benchmarks slowdown is between 29% up to 193%.

These results illustrate that a very lightweight and efficient en-

cryption can be achieved to target real-world applications on con-

strained processors. 

The rest of this paper is structured as follows:

Section 2 presents in more details the security model used in

this work, followed by a survey of related work in Section 3 .

Our software encryption process as well as its integration in the

LLVM framework is described in Section 4 . Then, the processor

modifications needed to support encryption, and implementation

of common software abstractions like exceptions, context switches

are presented in Section 5 . We conclude this paper by an evalu-

ation of our method in Section 6 . The security of this solution is

discussed, and result from our practical implementation on FPGA

are analyzed. 

This work is an extended version of [1] . It provides more de-

tails on the implementation of the solution and the handling of

exception. It also provides additional results about trade-offs be-

tween performance and area that can be achieved with different

configurations of the underlying cryptographic primitive. 

2. Security model 

In this work we consider a standard System on Chip (SoC) sys-

tem, with a single processor, as the one shown Fig. 1 . The pro-

cessor itself may or may not have instruction and data caches. Se-

cure processors usually draw an insecure boundary at the off-chip

memory interfaces. Beyond this boundary, it is assumed that any

data can be observed, or tampered with. 

Indeed, many popular attacks showed that memory can be eas-

ily extracted on a wide range of devices, even with cheap hard-

ware. As an example, ”Cold boot” family attacks exploit data per-

sistence in DRAMs [7] : after system reboot some critical part of

memory can then be recovered. Direct Memory Access (DMA)
omponents were successfully used to obtain read or write access

o CPU’s memory through some user accessible peripherals (e.g.,

irewire [8] ). Even direct probing using FPGA or low cost mod-

hips [9] is feasible on external buses like PCI express. 

On the other hand, attacking the internal logic of a processor,

ay, reading a register value at a given time, is far more challeng-

ng and requires advanced physical attack techniques as well as ex-

ensive equipment [10,11] . 

In this work, our goal is to protect the confidentiality of a given

achine code. Our insecure boundary is moved deeper inside the

hip, between the processor memory interfaces and its execution

ogic (caches are also considered as insecure). Formally, an adver-

ary is allowed to: 

• read any data stored into off-chip memories (the latter will be

ciphered), 

• read instructions located into the instruction cache or any on-

chip memory. 

For this purpose, we assume that the CPU’s execution logic

 Fig. 1 ) is shielded, physical attacks cannot be performed, such

hat cryptographic operations can be done safely inside the core.

his shielded region includes CPU’s internal state, like the program

ounter (PC), registers, etc. 

This work is primarily concerned with software protection. The

rograms executed on the device are assumed, in the sense that

hey do not store critical data in memory, or if so, manipulate

hem using a dedicated secure coprocessor. 

. Related work 

Obfuscation techniques are a well-known class of software-only

ountermeasures [12] , but cannot achieve provable security even

or restrained models [13] without some secure hardware. Heuris-

ic techniques have proven to increase the time and effort needed

o reverse a program, but can be defeated by an experimented ad-

ersary. Furthermore, the overhead on both program size and ex-

cution time is quite high: depending on obfuscation level, factors

etween × 10 and × 100 are common [14] . 

The use of software encryption in processors dates back to

est [15,16] , who proposed a series of patents that made up the

asis of the Dallas DS5002 [17] secure processor. Early versions of

he Dallas DS5002 were defeated by a famous attack performed

y Kuhn [5] . He managed to inject instructions and monitor I/O to

uild a malicious code capable of dumping the whole memory. 

Since then, number of researchers proposed hardware-assisted

emory encryption [18–23] . A block cipher is used as encryption

rimitive to perform data authentication and decryption when ac-

essing data from insecure external memory. The plain content is

hen placed in a processor-close memory, assumed free from tam-

ering (local RAM or a cache). It is well known that decryption la-

ency can quickly become a performance bottleneck in such archi-

ectures. Several techniques were proposed to reduce this latency,

ike predicting decryptions and keep one-time pad in small CPU-

nternal caches [24,25] . It was shown in [26] that most predictions

an be avoided if the compiler adds hints in the code about up-

oming decryptions. 

The closest approach to ours appears to be Instruction Set Ran-

omization (ISR) [3,27,28] , though mainly designed to prevent code

njection. It was shown in [3] that ISR can also be used to prevent

everse engineering. They added an additional processor instruc-

ion called rev to randomize the instruction set on demand. They

mplemented this software encryption using the Trivium stream ci-

her on top of a Leon2 (SPARC V8) core. Compared to this work

nd more generally ISR techniques, our solution do not need any

nstruction set extension, so it is more transparent to the program-

er. 
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Fig. 2. Encryption using a stream cipher. 
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Fig. 3. Illustration of basic block merging opportunities. 
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1 http://opencores.org/project,tiny_aes 
. Static code encryption with stream ciphers 

.1. Background on stream ciphers 

Stream ciphers are an efficient class of pseudorandom genera-

ors. Unlike block ciphers which provide a fixed-length permuta-

ion, they can produce an arbitrary long pseudorandom sequence.

ormally speaking, a stream cipher is specified by two functions: 

• init : K × IV → S, which generates an initial state from a se-

cret key and an Initialization Vector (IV). The IV can be made

public, while the secret key must be kept private. 

• genBits : S → S × C, which produces the next state and a pseu-

dorandom output. 

Once initialized with init and an arbitrary IV, pseudorandom

its can be generated on demand and used as a one-time pad to

rovide an encryption scheme, as shown in Fig. 2 . The IV has to be

ransmitted with the ciphertext to allow the receiver to decrypt.

e stress that IVs have to be uniformly distributed to guaran-

ee the full security of the scheme under chosen plaintext attacks

IND-CPA). Furthermore non uniform IV (using counter mode-like

onstruction) might lead to reduced attack complexity through

ime space trade-off attacks [29] . 

For most stream ciphers, the init function is a costly opera-

ion while the genBits function is quite fast. As a consequence,

tream ciphers are good for generating very long pseudorandom

equences. 

Let us note that a stream cipher can be constructed from a

lock cipher using the output feedback mode of encryption [30] .

owever, dedicated stream ciphers are far more efficient. In 2008,

he eStream [6] competition selected a set of recommended stream

iphers. For the hardware profile, three were selected: Trivium,

rain and Mickey. 

.2. Why stream ciphers? 

Block ciphers are a good established way achieve encryption in

ecure processor architectures [31] . The counter mode of encryp-

ion is a good fit for encrypting a processor address space. Indeed,

he base address of the data (or a block of data) can be used as

ounter value, and, unless virtual memory is used [22,32] , counter

alue uniqueness is guaranteed. 

However, block ciphers suffer from two limitations for being

sed to encrypt at the instruction level. The first one is that block

iphers are intrinsically fixed-length permutations, and for secu-

ity reason, the minimum recommended block size is 128 bits.

n the other hand, in many instruction set architectures, instruc-

ions almost never take more than 32 bits [33] . To exploit the full

hroughput of the block cipher, some sort of complex instruction

adding has to be designed. 

The second limitation is that the decryption primitive has to be

ble to work at CPU’s execution speed. Of course, a fully pipelined

mplementation of a block cipher would meet this requirement,

ut may also significantly increase the hardware footprint. As an
llustration, the fully pipelined AES implementation from Open-

ores 1 , is 3 times the size of our base MIPS processor. 

On the other hand, instruction execution is most of the time

 very sequential process, at least on in-order processor architec-

ures. As already mentioned, stream ciphers, once initialized, are

uite efficient to generate random bits. For this reason they seem

o fit quite well with the job of encrypting software at instruc-

ion granularity. Once initialized, a stream cipher is usually able to

ecrypt one instruction per cycle, whereas a block cipher would

equire several rounds between each instruction. 

.3. Encrypting machine code 

Because of the stateful nature of stream ciphers, it is not

traightforward to use them for encrypting instructions. Let first

emark that a whole program cannot be encrypted using a unique

tream. Indeed, in case of a jump, the stream used at the destina-

ion address must be known to keep decrypting instructions. The

nly way to recover it is to re-compute the entire stream from pro-

ram start to the target instruction, which would be quite ineffi-

ient for long programs. Thus, it seems clear that a finer encryp-

ion granularity should be adopted. 

For this purpose let us introduce basic blocks (BB), a fundamen-

al structure in compiler construction. A basic block is defined as

 sequence of instructions without intermediate incoming or out-

oing branches. The only entry point of a BB is its first instruction

nd its output is its last instruction. As an illustration, the program

epicted Fig. 3 (b)is made of six BB. Considering in-order processor

rchitectures, a basic block is then always executed sequentially,

nd can be encrypted using a unique stream cipher sequence. By

onstruction, it is impossible for a branch to fall in the middle of a

B, so the stream cipher state never has to be reconstructed to an

rbitrary state. 

To encrypt a whole program, independent stream cipher se-

uences are generated for each basic block, using different ini-

ialization vectors (further details on this topic will be given in

ection 4.4 ). For a processor executing such an encrypted software,

ranch instructions, which notify a BB change, have to trigger a re-

et of the stream cipher with a new IV. 
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Table 1 

MIPS instructions used in this paper and their se- 

mantic. 

Instruction Semantic 

li $ t0, value $ t 0 ← value 

lw $ t0, N ($ a0 ) $ t 0 ← MEM [$ a 0 + N] 

add $ t0, $ t1, $ t2 $ t 0 ← $ t1+ $ t 2 

bne $ t0, $ t1, dst if $ t 0 � = $ t 1, jump to dst 

jump dst jump to dst 

jr $ t0 jump to address in $ t 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Illustration of a branchless fall through situation (from BB1 to BB2). 
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The rest of this section describes more precisely the encryption

process, divided into three stages. To illustrate them, code exam-

ples are given in MIPS assembly. Registers are prefixed with a dol-

lar symbol (e.g., $ t0 , $ a1 ), all instructions used with their seman-

tic are listed in Table 1 . Further details can be found in the instruc-

tion set reference [34] . 

4.3.1. Merging basic blocks for encryption 

A limitation of the basic block approach to encryption is that,

programs usually have a large number of small basic blocks: for

MIPS programs [33] , most basic blocks have between 3 and 8 in-

structions. Of course this metric is highly dependent on the input

program and the instruction set architecture. A high number of ba-

sic blocks means that the stream cipher init function will have to

be called very often at the execution, possibly leading to an impor-

tant slowdown. 

Hopefully longer sequences can be encrypted with the same

stream. Indeed, the only requirement for a sequence of instruc-

tions to be encrypted with the same stream, is that there is no

incoming jump somewhere other than the first instruction. There

is absolutely no restriction on the number of outgoing jumps in

an encrypted sequence of instructions. It slightly differs from a ba-

sic block, which cannot have more than one outgoing jump. This

structure will be called an encryptable basic block for the rest of

this paper and is defined as follows. 

Definition 1. Encryptable Basic Block (EBB): A sequence of instruc-

tions which has no incoming jumps other than at its first instruc-

tion. It may contain any number of outgoing jumps. 

This structure is known in compiler construction as a su-

perblock [35] . It is widely used to optimize programs for Very Long

Instruction Word (VLIW) architectures. Some powerful techniques

are available to create large superblocks: branch target expansion,

loop unrolling, common subexpression detection. But an in-depth

study of the optimal merging approach would bring us out of the

scope of this paper. 

Meanwhile, a very simple strategy is applied to merge the ba-

sic blocks. Two successive basic blocks (i.e, consecutive in the ad-

dress space) can be merged for encryption if the second one has

no incoming jump (can only be reached from the first one). To

perform a full merging, this two-block merging is applied on the

control flow graph until a fixed point is reached. Even this simple

approach brings performance improvements (7% on average). 

The merging occurs very frequently in practice, for instance

while translating if-else structures. As an illustration, Fig. 3 is given

a very simple function, which checks a set of preconditions on

an array and returns false whenever one of them is not satisfied.

The control flow graph obtained using a normal compilation pro-

cess generates lots of basic blocks ( Fig. 3 b). Without merging ba-

sic blocks, it would require six different encryption sequences, one

for each basic block. However this control flow graph can be fully

merged into just two encryptable basic blocks as shown Fig. 3 (c). 
.3.2. Removing branchless fall through basic blocks 

A special case to take care of for encryption correctness is that

ompilers, as an optimization, usually remove away branches go-

ng from two successive basic blocks. Indeed, the compiler assumes

hat when two BBs are layout successors, then the first one can fall

nto the second one, without needing an extra jump. This behav-

or has to be disabled when encrypting programs, otherwise the

rocessor will not detect a sequence change and continue its exe-

ution with the wrong stream. As an example, Fig. 4 , BB2 has two

redecessors (BB0 and BB1), and BB1 falls through BB2 without a

ump. To fix this graph for encryption, an explicit direct jump to

B2 is inserted at the end of BB1 ( Fig. 4 b). 

The branch removal appears early in the LLVM compilation

ipeline, so instead of modifying it directly, a late pass was imple-

ented, that inserts back these missing branches. Then, this pass

an be scheduled after the basic block merging described previ-

usly, to insert just the minimum number of branches required to

x the control flow graph. 

.4. Initialization vector selection schemes 

The previous section described how the control flow graph can

e prepared for the encryption. To fully encrypt a graph of encrypt-

ble basic blocks, a unique encryption stream has to be generated

or each one of them. The secret key being fixed and hard-wired

nto the processor, initialization vectors can be used to generate

istinct sequences. Unlike the secret key, IVs are public data, there

s no need to keep them secret. The only requirement is that they

ust be unique across the whole program to guarantee security of

he one-time pad encryption. 

.4.1. A Counter Mode approach 

A first possible approach is to compute IVs from the current

rogram counter value (CTR mode). Formally, a random initializa-

ion vector IV 0 is generated for the whole program, then to en-

rypt an EBB, the IV is computed as I V = I V 0 + EBB ad d r , and instruc-

ions are ”xored” with the corresponding stream cipher sequence

as shown Table 2 ). IVs uniqueness is guaranteed if virtual mem-

ry isn’t used, as for a given program there is only one instruction

apped to a given address. 

The benefits of this method are that there is no impact on

ode size, and it makes decryption dependent on current processor

tate. This last property can be used to build control flow integrity

hecking mechanisms [2] . 

.4.2. Interleaving IVs in code 

Another approach is to interleave IVs within the instructions.

he IV for the current EBB can be supplied using a known mem-
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Table 2 

Basic block encryption using counter mode IVs. 

Instruction Encryption Encryption context 

s 0 ← init (IV 0 + EBB addr ) 

i 0 lw $ t0, 0 ($ a0 ) i 0 �r 0 (r 0 , s 1 ) ← genBits (s 0 ) 

i 1 li $ t1, 1 i 1 �r 1 (r 1 , s 2 ) ← genBits (s 1 ) 

i 2 bne $ t0, $ t1, dst i 2 �r 2 (r 2 , s 3 ) ← genBits (s 2 ) 

. . . . . . 

i n j dst i n �r n (r n , s n +1 ) ← genBits (s n ) 

Table 3 

Basic block encryption with interleaved IVs. 

Instruction Encryption Encryption context 

IV s 0 ← init (IV ) 

i 0 lw $ t0, 0 ($ a0 ) i 0 �r 0 (r 0 , s 1 ) ← genBits (s 0 ) 

i 1 li $ t1, 1 i 1 �r 1 (r 1 , s 2 ) ← genBits (s 1 ) 

i 2 bne $ t0, $ t1, dst i 2 �r 2 (r 2 , s 3 ) ← genBits (s 2 ) 

. . . . . . 

i n j dst i n �r n (r n , s n +1 ) ← genBits (s n ) 
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Fig. 5. Compilation flow for an encrypted program. 
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ry layout, as it would be done for a classic message transmission

ver an insecure channel. For example, the IV can be inserted at

he beginning of each encryptable basic block, as shown in the ex-

mple Table 3 . 

Being able to use arbitrary IVs is interesting in terms of secu-

ity: for instance, in the context of an output feedback mode of

ncryption (generalized stream cipher), provable IND-CPA [30] en-

ryption can be achieved. This also allows the use other modes

f encryption, which require uniformly random IVs, like Cipher

lock Chaining mode (CBC). Another interesting application is that

t makes code sharing between programs straightforward (solving

ne of the issues addressed in [32] ), so encrypted shared libraries

an be generated and dynamically linked to. 

However, encryption is not anymore dependent on the address

f instructions, hence code can be relocated. Unfortunately, such

rograms are more prone to code reuse attacks, as any EBB can be

oved or called from anywhere. 

.4.3. Combining the two approaches 

A third option is to use a combination of the two previous

chemes, a random IV is interleaved within the code, and com-

ined with the current program counter value to generate the en-

ryption sequence. This way, the code is more resilient to code

euse attacks, while still allowing other encryption modes to be

sed. 

.5. LLVM Integration 

The full code encryption process is separated in two sequen-

ial parts, a control flow restructuring part implemented in the

LVM [4] compiler framework, followed by a second part that does

he encryption. The motivation for this two-stage design is to sup-

ort linkage of encrypted programs, and to statically guarantee IVs

niqueness across the entire program. 

Three additional passes are implemented and inserted into

LVM’s MIPS code generation backend. It would be much cleaner if

hey could be done on LLVM intermediate representation (middle-

nd). Unfortunately these passes make use of basic block place-

ent information, which are generated in early backend passes.

hat being said, passes are very generic and can be easily ported

o other RISC targets. 

The first pass does the basic block merging, the second one

earches and adds jumps between fall through basic blocks and

he optional third one sets up the layout for IV storage. It allo-

ates space in the code where IVs will be stored, at this stage,

emory addresses are not computed yet so these slots can be
nserted without breaking the address layout. Thanks to LLVM’s

ighly modular design, the code still benefits from late optimiza-

ion passes, including delay slot filling. 

The encryption is done by a standalone program which takes

s input a fully linked object file and produces the final encrypted

inary that can be distributed securely to the processor. This tool

econstructs the control flow graph and internally runs a software

ersion of the stream cipher (Trivium in our case). It is also re-

ponsible for choosing IVs for the whole program and ensures that

ll of them are unique. 

Fig. 5 illustrates the complete compile flow. For the program-

er, producing an encrypted binary boils down to: 1. adding a

ompiler flag while compiling sources to object files, 2. encrypt

he final binary. Hence the encryption can be easily integrated in a

tandard build system like Make. 

. Hardware support 

The architectural modifications required for the decryption are

hown in Fig. 6 . Instead of providing an instruction directly from

emory to the decoding logic, this value is unmasked with a

tream generated by an internal cipher. Furthermore, the processor

ranch handling is also modified to handle IV change. Whenever a

ranch is taken, the processor executes the following steps: 

1. Latch the branch destination address in an additional register

called PC prev . 

2. Compute the IV for the branch destination address. Depend-

ing on the IV selection scheme used (discussed 4.4 ) either read

it from instruction memory (and skip several instructions), or

compute it from the current program counter value. This step

may span over several clock cycles. 

3. Reset the stream cipher and wait for initialization to be done. 

4. Continue execution as soon as the stream is ready 

.1. Handling exceptions/interruptions 

An exception is an unexpected event during program execution

a division by zero, an invalid memory access, an external interrup-

ion, ...) which needs a special treatment before continuing. Most

rocessors handle exceptions by jumping to an exception handler

nd putting the processor into a special mode. Once the exception

s handled, the processor resumes its normal execution to the in-

truction where the exception was triggered. 

At first glance, exceptions appear somewhat incompatible with

he encryption mechanism described in Section 4.3 . Jumping to

n exception handler is perfectly fine: one just need to reset the
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Fig. 6. Modification made to CPU’s fetch stage for encryption support. 
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stream cipher with the IV used to encrypt the exception handler

code. However, it might be the case that the execution resumes in

the middle of an EBB, which breaks the definition 1 . 

Then, the processor must be able to restore or re-compute

the correct stream cipher state when returning from the excep-

tion handler. A straightforward approach would be to just save the

whole stream cipher state on exception, but it would require im-

portant storage and it is not satisfying in terms of security. Indeed,

anyone can compute the full encryption sequence from a given

stream cipher state (see Section 4.1 ), so it must be kept as private

as the secret key. Another approach would be to mask exceptions

until an EBB boundary is detected. But it seems rather difficult,

as one would need additional data for runtime EBB reconstruction

and it can be applied only to exception whose treatment can be

deferred. 

Instead, we investigated a simple strategy to restore the stream

cipher state at any location in a program. For this, we remark that

only the EBB start address and the current offset in the EBB need

to be known to restore the stream cipher state. Indeed, execution

can resume at the beginning of the EBB where the exception oc-

curred, and instructions are skipped until the offset is reached. This

way, the correct stream cipher state is regenerated and the execu-

tion can resume with the correct decryption stream. 

The hardware support for this strategy, depicted Fig. 6 , is made

of three additional registers: PC prev in the fetch stage, together with

EPC prev and EPC target both as control and status registers. The regis-

ter PC prev is latched whenever a branch is taken to the destina-

tion address. On exception, PC prev is saved into the control and

status register EPC prev . The latter is made readable from the soft-

ware by overloading MIPS mfc0 instruction 

2 The additional regis-

ter EPC target is used to detect when the real execution must resume.

5.2. Context switching 

In order to support context switching with encryption, the pro-

grammer must be able to save and restore the stream cipher state

for the current process. As context switching relies on exceptions,

the above solution can be reused easily. One just need to save and

restore the two additional control and status registers ( EPC prev and

EPC target ) as part of the context switching procedure. 
2 The MIPS instructions mfc0 and mtc0 move data from and to control and sta- 

tus registers. 

o  

g  

b

. Evaluation 

.1. Security analysis 

As the CPU machine code is encrypted using a proven IND-CPA 

3 

ncryption scheme, it benefits from security proofs of the under-

ying scheme. The key must be kept secret inside the processor

nd assumed free from observation and tampering. Under these

ypothesis, an adversary just observing the instruction memory is

quivalently viewing encrypted messages, that is, pairs of the form

(IV, Enc k (IV, m )) . In practice, it means that an adversary cannot

istinguish between the encryption of two different instructions.

ven if two instructions are the same or share some common parts

ike the opcode, the encryption will produce undistinguishable ci-

hertexts. 

However, it is worth saying that encryption alone provide pro-

ection only against a very restrained attack model, in particular it

oes not cover: 

• An adversary modifying memory (like Kuhn’s attack [5] ). 

• Dynamic analysis of memory access patterns [36] . 

.2. Compatibility with software integrity mechanisms 

Software Integrity has been ignored through this work so far.

et, it is a real concern (see Section 2 ). In particular when using a

ne-time pad encryption, ciphertexts can be easily tampered with.

or instance, a destination register can be changed just by ”xoring”

he correct field in a ciphered instruction. 

Fortunately, most integrity checking mechanisms from other se-

ure processor architectures [31] can be applied on top of our en-

ryption method (encrypt-then-authenticate paradigm). However

nstruction level integrity does not seem realistic: a tag would have

o be associated with each instruction, resulting in a huge code

ize increase. The best solution seems to authenticate data per

lock of fixed length, either a cache line or a buffer of instructions

f the system does not have a cache. To be fully effective, integrity

hecking has to be done before executing a complete block of in-

truction, to prevent any unchecked instruction from executing. 

.3. Hardware implementation 

The hardware support described in Section 5 is implemented

n a 32-bit MIPS [34] soft core. The processor itself is an inte-

er only, in-order, five-stage pipeline, with 32 KB of read only in-
3 The scheme used is IND-CPA under the assumption that the function F defined 

y F k (IV ) = genBits ( init (k, IV )) is a pseudorandom function [30] 
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Fig. 7. Trivium stream cipher (one bit version). 

Table 4 

Synthesis results on Altera Cyclone V (5CEBA4F23C7N). 

Adaptative Logic Module (ALM) f max 

tiny AES 128 3403 (18%) 189 MHz 

Trivium_x1 148 (0.8%) 456 MHz 

Trivium_x32 237 (1.2%) 360 MHz 

Trivium_x64 288 (1.5%) 344 MHz 

Trivium_x128 731 (3.9%) 227 MHz 

CPU base 1094 (5.9%) 108 MHz 

CPU enc 1379 (7.46%) 108 MHz 
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t  
truction memory, and 32 KB of data RAM, both are single cycle

atency memory (implemented using FPGA’s BRAMs). The synthe-

es are done on a low-cost Altera FGPA from the Cyclone V family

5CEBA4F23C7N). 

.3.1. Trivium 

Trivium, an eStream [6] hardware profile finalist, is used as the

nderlying stream cipher for code encryption because of its sim-

licity and efficiency. The one bit version depicted Fig. 7 , is made

p of a 288-bit register as its internal state with a few combina-

orial gates. Trivium supports 80 bit-length key and IV. The initial-

zation is done by loading the key and the IV in the internal state

ollowed by several rounds (1152 for the one bit version) without

utputting bits. 

Obviously, the one bit version of this stream cipher is not well-

uited for code encryption. Fortunately, Trivium can be unrolled so

hat several bits are generated per clock cycle. As a side effect, it

lso reduces the initialization latency. Thanks to the data depen-

encies of Trivium’s combinatorial path, it can be unrolled up to

5 bits without increasing its circuit depth. Further unrolling can

till be done, but it would increase the critical path and decrease

he maximum frequency. 

We synthesized Trivium for unrolling levels ranging from 1 up

o 192 and measured the FPGA occupancy (in ALM) together with

he initialization latency. The latter is computed using the formula

nit latency (p) = f max ∗ 1152 /p, where p is the unrolling level. The re-

ults are shown in Fig. 8 . The area usage seems linear in the un-

olling level while the initialization latency stabilizes around 25 ns.

.3.2. Processor with encryption support 

Table 4 provides a set of synthesis results as well as maximum

requency obtained through static timing analysis. One can observe

hat Trivium, even unrolled, has a very small footprint and a very

igh maximum frequency. 

As a comparison, a fully pipelined 128 bit AES implementation

ound on OpenCores is also synthesized, it has an initial latency
f 21 cycles (very close to the 18 cycles needed by Trivium x64).

lthough it achieves a higher throughput than the Trivium imple-

entations, it uses far more FPGA resources. It is more than three

imes bigger than our base processor, and more than ten times big-

er than the Trivium x64. This illustrates why stream ciphers are

uch good candidates for the encryption. 

The complete encryption mechanism increases overall FPGA oc-

upancy by 1.5%, and the size of the core by 26%, mainly because

f Trivium circuit and little additional control hardware. Interest-

ngly, the encryption hardware does not affect CPU’s critical path,

ence, the maximum frequency of the circuit is unchanged. 

.4. Performance analysis 

The following evaluation methodology is used: an input pro-

ram is compiled using some constant compiler flags, with and

ithout encryption. The two resulting programs are then com-

ared under two criteria, code size and execution time (measured

n CPU cycles). The flags used are -O3 , which optimizes the input

rogram for execution speed, and -Oz , which optimizes for size. 

These measurements are done for the two different IV selection

chemes described in Section 4.4 : IVs computed only from pro-

ram counter, and IVs interleaved in code. A set of relevant pro-

rams was selected to run the above measurements. Most of them

re based on open-source libraries and can be easily ported on any

mbedded processors. Raw results are given in Table 5 . 

.4.1. Code size overhead 

Results for size overhead are represented in Fig. 9 . Interestingly,

ven when storing IVs at the beginning of each basic block, the

inary size does not increase by more than 40%. When IVs are not

nterleaved there is still a binary size increase due the basic block

estructuring, but the observed increase does not exceed 11%. 

Compiler options have a clear impact on the results. Our inter-

retation is that speed optimizations (enabled with option -O3 )
erform aggressive inlining and unrolling which increase basic

locks sizes, hence reduce the impact of encryption (in particular

f IVs are interleaved). 

.4.2. Execution time overhead 

The encryption mechanism also introduces a runtime overhead,

ore precisely latency is added for each branch taken, because the

tream cipher has to be initialized with a new IV. The CPU cannot

e fed with new instructions while the stream is not ready. With

he stream cipher used in these experiments, trivium_x64 running

t CPU’s clock, this latency is 18 cycles. 

The results given in Fig. 10 show that the slowdown ranges

rom 29% up to 193%. As a comparison, the authors in [26] ob-

erved an average overhead of 60% for decryption in a processor

ithout cache. As expected, the overhead is minimized with per-

ormance optimizations ( -O3 ) and when IVs are computed from

C. In that case, the average slowdown is of 48%. When IVs are in-

erleaved in code, the processor has to skip some (3 in our case)

nstructions at the beginning of each basic block, so performances

re further reduced. This overhead is likely to stay reasonable un-

ess critical loops contain an important number of jumps. 

We stress that our experimental processor does not include any

ache memory, hence only the effect of the encryption is taken

nto account. Performances are expected to be better with an in-

truction cache, as the fetch on a cache miss can overlap with

tream cipher initialization. 

.5. Pitfalls and further work 

Our solution still suffers some pitfalls that we tried to iden-

ify as best as possible. First, a small hardware support must be



50 T. Hiscock et al. / Microprocessors and Microsystems 64 (2019) 43–52 

Fig. 8. Evolution of Trivium area and initialization latency for different unrolling levels. 

Table 5 

Performance and Size Overhead Results. 

IVs from PC IVs interleaved in code 

LLVM -Oz LLVM -O3 LLVM -Oz LLVM -O3 

Benchmark size time size time size time size time 

AES + 5 % x2.39 + 2.3% x1.29 27.4% x2.93 7.8 % x1.41 

SHA1 + 6.6% x2.10 + 6.8% x1.56 35.3% x2.52 28.6% x1.76 

Quicksort + 9.5% x2.26 + 11 % x1.59 35.6% x2.75 30.1% x1.82 

uECC + 7.4% x2.16 + 7.2% x1.5 38.1% x2.61 35.7% x1.70 

Average + 7.12% x2.23 + 6.8% x1.48 34.1% x2.70 25.5% x1.67 

Fig. 9. Overhead factor on program size. 

Fig. 10. Overhead factor on execution time. 



T. Hiscock et al. / Microprocessors and Microsystems 64 (2019) 43–52 51 

a  

a  

d  

m

 

t  

g  

t  

t  

t  

s  

t  

i

7

 

p  

l  

s  

l  

t  

a  

p

A

 

t  

a

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

[  

 

 

[  

 

[  

 

[  

 

[  

 

 

 

 

[  

 

[  

[  

 

[  

[  

 

[  

[  

 

 

[  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

o  

t

dded on-chip, which restrains the range of target systems. From

 security perspective, the protection is static, and does not cover

ynamic aspects, e.g., an adversary that would track and analyze

emory access patterns (control flow analysis). 

Further work could be done to improve performances. We saw

hat this kind of encryption is highly compiler dependent, this sug-

ests that the basic block placement algorithm could be modified

o maximize the basic block merging. The hardware implementa-

ion described in this paper is simple, significant speed-up is likely

o be achieved with a more evolved architecture. This could be a

tream cipher working at higher frequency than the CPU’s clock, or

o couple the stream cipher with branch prediction to begin initial-

zation ahead. 

. Conclusion 

This paper describes an efficient method to encrypt a binary

rogram with a stream cipher. The decryption is so fast and

ightweight that it can be performed very deeply in the proces-

or, so that plain instructions remain only in processor execution

ogic. The method requires slight hardware and software modifica-

ion, which are implemented and evaluated on FPGA. The results

re promising and open interesting perspectives in order to im-

rove performances and increase the range of applications. 
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